- Home
- Neuroconductor Tutorials
- Ms lesion
Multiple Sclerosis Lesion Segmentation
John Muschelli
2021-02-17
All code for this document is located at here.
Data
We will be using the data from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge. The data consists of a single subject at 2 time points, baseline and followup. The data is available for non-commercial purposes. We will download the data from GitHub using the git2r
package.
Data Description
The data description was presented in E. Sweeney et al. (2013). The data in the folder was also discussed in Muschelli et al. (2015). It consists of one patient with multiple sclerosis (MS) with multi-sequence magnetic resonance imaging (MRI) data from 2 different time points.
Package Version
Here we will be using the oasis
package greater than version 2.2. If you do not have this package and it’s not located on CRAN yet, we will install it from GitHub.
library(dplyr)
loaded_package_version = function(pkg) {
packs = devtools::session_info()$packages
ver = packs %>%
filter(package %in% pkg) %>%
select(package, loadedversion)
return(ver)
}
check_package_version = function(pkg, min_version){
stopifnot(length(pkg) == 1)
ver = loaded_package_version(pkg = pkg)
ver = as.character(ver$loadedversion)
min_version = as.character(min_version)
# check to see if version is at least the min_version
utils::compareVersion(a = ver, b = min_version) >= 0
}
check = check_package_version("oasis", min_version = "2.2")
if (!check) {
source("https://neuroconductor.org/neurocLite.R")
neuroc_install("oasis")
}
There was a slight bug in oasis_preproc
which needed to be corrected for the following code to work
Getting the data
We will use the git2r
package to download the package into a folder called data
. The code below will clone the GitHub repository to the data
folder, then delete the .git
folder, which stores changes to the data, which can be a large file. We will also delete any processed data such as the brain mask and the skull-stripped image.
library(git2r)
if (!dir.exists("data")) {
repo = clone(url = "https://github.com/muschellij2/fslr_data",
local_path = "data/")
unlink(file.path("data/.git"), recursive = TRUE)
file.remove(file.path("data", "SS_Image.nii.gz"))
file.remove(file.path("data", "Brain_Mask.nii.gz"))
}
Creating a filename data.frame
Here we will make a data.frame
that has the imaging modality and the case number so we can sort or reorder if necessary:
df = list.files(path = "data",
pattern = "[.]nii[.]gz$",
full.names = TRUE)
df = data.frame(file = df, stringsAsFactors = FALSE)
print(head(df))
file
1 data/01-Baseline_Brain_Mask.nii.gz
2 data/01-Baseline_FLAIR_ants_preprocessed.nii.gz
3 data/01-Baseline_FLAIR_preprocessed.nii.gz
4 data/01-Baseline_FLAIR.nii.gz
5 data/01-Baseline_N4_Brain_Mask.nii.gz
6 data/01-Baseline_PD_ants_preprocessed.nii.gz
We have the filenames in one column and will be doing some string manipulation to parse the information about the id and the modality/sequence:
df$fname = nii.stub(df$file, bn = TRUE)
df$id = gsub("^(\\d\\d)-.*", "\\1", df$fname)
df$timepoint = gsub("^\\d\\d-(.*)_.*$", "\\1", df$fname)
df$modality = gsub("\\d\\d-.*_(.*)$", "\\1", df$fname)
print(unique(df$id))
[1] "01"
print(unique(df$modality))
[1] "Mask" "preprocessed" "FLAIR" "PD" "T1"
[6] "T2"
print(head(df))
file
1 data/01-Baseline_Brain_Mask.nii.gz
2 data/01-Baseline_FLAIR_ants_preprocessed.nii.gz
3 data/01-Baseline_FLAIR_preprocessed.nii.gz
4 data/01-Baseline_FLAIR.nii.gz
5 data/01-Baseline_N4_Brain_Mask.nii.gz
6 data/01-Baseline_PD_ants_preprocessed.nii.gz
fname id timepoint modality
1 01-Baseline_Brain_Mask 01 Baseline_Brain Mask
2 01-Baseline_FLAIR_ants_preprocessed 01 Baseline_FLAIR_ants preprocessed
3 01-Baseline_FLAIR_preprocessed 01 Baseline_FLAIR preprocessed
4 01-Baseline_FLAIR 01 Baseline FLAIR
5 01-Baseline_N4_Brain_Mask 01 Baseline_N4_Brain Mask
6 01-Baseline_PD_ants_preprocessed 01 Baseline_PD_ants preprocessed
Cross-sectional MS Lesion Segmentation: OASIS package
The oasis
package implements the pipeline from E. M. Sweeney et al. (2013). The package relies on fslr
and therefore a working installation of FSL. The package will perform the data preprocessing, train a model for lesion segmentation if gold-standard, manual segmentations are provided, and predict lesions from that model or the model from E. M. Sweeney et al. (2013) if no model (e.g. no gold standard) is provided.
ss = split(df, df$timepoint)
ss = lapply(ss, function(x){
mods = x$modality
xx = x$file
names(xx) = mods
return(xx)
})
Preprocessing
The preprocessing is performed using the oasis_preproc
function. It requires a T1, T2, and FLAIR image. A proton density (PD) is not necessary, but the original OASIS model had PD and the model in the package relies on a PD image.
dat = ss[[1]]
print(dat)
FLAIR PD
"data/01-Baseline_FLAIR.nii.gz" "data/01-Baseline_PD.nii.gz"
T1 T2
"data/01-Baseline_T1.nii.gz" "data/01-Baseline_T2.nii.gz"
# preparing output filenames
outfiles = nii.stub(dat)
brain_mask = gsub("_T1$", "", outfiles["T1"])
brain_mask = paste0(brain_mask, "_Brain_Mask.nii.gz")
outfiles = paste0(outfiles, "_preprocessed.nii.gz")
names(outfiles) = names(dat)
outfiles = c(outfiles, brain_mask = brain_mask)
outfiles = outfiles[ names(outfiles) != "mask"]
if (!all(file.exists(outfiles))) {
pre = oasis_preproc(
flair = dat["FLAIR"],
t1 = dat["T1"],
t2 = dat["T2"],
pd = dat["PD"],
cores = 1)
writenii(pre$t1, filename = outfiles["T1"])
writenii(pre$t2, filename = outfiles["T2"])
writenii(pre$flair, filename = outfiles["FLAIR"])
writenii(pre$pd, filename = outfiles["PD"])
writenii(pre$brain_mask, filename = outfiles["brain_mask"])
}
Review of the results
Here we will read in the output images and the brain mask. We will normalize the image intensities using zscore_img
so that the intensities are in the same scale range for plotting. We will
imgs = lapply(outfiles[c("T1", "T2", "FLAIR", "PD")], readnii)
brain_mask = readnii(outfiles["brain_mask"])
imgs = lapply(imgs, robust_window)
norm_imgs = lapply(imgs, zscore_img, margin = NULL, mask = brain_mask)
We will drop the empty image dimensions for plotting later. We pass in the mask
and the list of normalized images, remove the empty dimensions, and then we later re-mask the data
dd = dropEmptyImageDimensions(brain_mask, other.imgs = norm_imgs)
red_mask = dd$outimg
norm_imgs = dd$other.imgs
norm_imgs = lapply(norm_imgs, mask_img, mask = red_mask)
Here we will show each imaging modality at the same slice:
z = floor(nsli(norm_imgs[[1]])/2)
multi_overlay(
norm_imgs,
z = z,
text = names(norm_imgs),
text.x =
rep(0.5, length(norm_imgs)),
text.y =
rep(1.4, length(norm_imgs)),
text.cex =
rep(2.5, length(norm_imgs)))
We see that the registration seems to have performed well in that the same slice across sequences represent the same areas of the brain.
Creating Predictors
Now that we’ve performed preprocessing of the data, we can create a dataset of these images whole-brain normalized and a series of smoothed images of the data.
df_list = oasis_train_dataframe(
flair = outfiles["FLAIR"],
t1 = outfiles["T1"],
t2 = outfiles["T2"],
pd = outfiles["PD"],
preproc = FALSE,
brain_mask = outfiles["brain_mask"],
eroder = "oasis")
Checking File inputs
Eroding Brain Mask
Normalizing Images using Z-score
Voxel Selection Procedure
Smoothing Images: Sigma = 10
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2446c3a5.nii.gz" -s 10 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c21d6983e";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228cfa51fcd.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21cad3c1.nii.gz" -s 10 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228cb14353c"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228cb14353c" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d6983e.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21cad3c1.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228cb14353c";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c5bb2fbd2.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c43b2c706.nii.gz" -s 10 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228ce287da3"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228ce287da3" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d6983e.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c43b2c706.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228ce287da3";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c4505f98.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c38b3f65e.nii.gz" -s 10 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c2ef3b267"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c2ef3b267" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d6983e.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c38b3f65e.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c2ef3b267";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c145a046.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d5451.nii.gz" -s 10 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c538a92ec"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c538a92ec" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d6983e.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c21d5451.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c538a92ec";
Smoothing Images: Sigma = 20
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2eb3eecd.nii.gz" -s 20 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c2702ecaf";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c3100e92b.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c32cc1f2f.nii.gz" -s 20 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c771360b6"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c771360b6" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2702ecaf.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c32cc1f2f.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c771360b6";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c193289cd.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c44f4fea7.nii.gz" -s 20 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c307aa94f"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c307aa94f" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2702ecaf.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c44f4fea7.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c307aa94f";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c45019a66.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c6c3fc1ee.nii.gz" -s 20 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c4dd527c7"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c4dd527c7" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2702ecaf.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c6c3fc1ee.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c4dd527c7";
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c6526a1bc.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c4b447185.nii.gz" -s 20 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c7a78f95d"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c7a78f95d" -div "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c2702ecaf.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c4b447185.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c7a78f95d";
oasis_dataframe = df_list$oasis_dataframe
brain_mask = df_list$brain_mask
top_voxels = df_list$voxel_selection
We will use the model included in the oasis
package since we do not currently have a gold standard. After predicting, we smooth the probability map using adjacent voxel probabilities. We then threshold this probability map to give a binary prediction of lesions.
## make the model predictions
predictions = predict( oasis::oasis_model,
newdata = oasis_dataframe,
type = 'response')
pred_img = niftiarr(brain_mask, 0)
pred_img[top_voxels == 1] = predictions
library(fslr)
##smooth the probability map
prob_map = fslsmooth(pred_img, sigma = 1.25,
mask = brain_mask, retimg = TRUE,
smooth_mask = TRUE)
fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c83bec5f.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c161b5532.nii.gz" -s 1.25 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c5c7650f4"; fslmaths "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c161b5532.nii.gz" -s 1.25 "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c5bbcf298.nii.gz"; fslmaths "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c5c7650f4" -div "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c5bbcf298.nii.gz" -mas "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/Rtmp8ulLID/file228c161b5532.nii.gz" "/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T//Rtmp8ulLID/file228c5c7650f4";
threshold = 0.16
binary_map = prob_map > threshold
We can apply our empty-slice reduction from earlier so that the binary prediction and the normalized images are the same dimensions.
We will overlay the predictions on the images and use the alpha
function from the scales
package to alpha-blend the intensities so we can see the underlying image as well as the areas delineated as lesion.
library(scales)
reduced_binary_map = apply_empty_dim(img = binary_map,
inds = dd$inds)
ortho2(norm_imgs$FLAIR, reduced_binary_map,
col.y = scales::alpha("red", 0.5))
double_ortho(norm_imgs$FLAIR, reduced_binary_map, col.y = "red")
multi_overlay(
norm_imgs,
y = list(reduced_binary_map,
reduced_binary_map,
reduced_binary_map,
reduced_binary_map),
col.y = scales::alpha("red", 0.5) ,
z = z,
text = names(norm_imgs),
text.x =
rep(0.5, length(norm_imgs)),
text.y =
rep(1.4, length(norm_imgs)),
text.cex =
rep(2.5, length(norm_imgs)))
Analagous preprocessing with ANTsR and extrantsr
Although the original OASIS model was done using FSL, we can perform preprocessing in ANTsR if we later would like to train a model based on this preprocessing. Note, the original model may not work well as it may be specific to the preprocessing done in FSL.
check = check_package_version("extrantsr", min_version = "2.2.1")
if (!check) {
source("https://neuroconductor.org/neurocLite.R")
neuroc_install("extrantsr")
}
dat = ss[[1]]
print(dat)
FLAIR PD
"data/01-Baseline_FLAIR.nii.gz" "data/01-Baseline_PD.nii.gz"
T1 T2
"data/01-Baseline_T1.nii.gz" "data/01-Baseline_T2.nii.gz"
# preparing output filenames
ants_outfiles = nii.stub(dat)
n4_brain_mask = gsub("_T1$", "", ants_outfiles["T1"])
n4_brain_mask = paste0(n4_brain_mask, "_N4_Brain_Mask.nii.gz")
ants_outfiles = paste0(ants_outfiles, "_ants_preprocessed.nii.gz")
names(ants_outfiles) = names(dat)
ants_outfiles = ants_outfiles[ names(ants_outfiles) != "mask"]
if (!all(file.exists(ants_outfiles))) {
pre = preprocess_mri_within(
files = dat[c("T1", "T2", "FLAIR", "PD")],
outfiles = ants_outfiles[c("T1", "T2", "FLAIR", "PD")],
correct = TRUE,
correction = "N4",
skull_strip = FALSE,
typeofTransform = "Rigid",
interpolator = "LanczosWindowedSinc")
ss = fslbet_robust(
ants_outfiles["T1"],
correct = FALSE,
bet.opts = "-v")
ss = ss > 0
writenii(ss, filename = n4_brain_mask)
imgs = lapply(ants_outfiles[c("T1", "T2", "FLAIR", "PD")],
readnii)
imgs = lapply(imgs, mask_img, ss)
imgs = lapply(imgs, bias_correct, correction = "N4",
mask = ss)
mapply(function(img, fname){
writenii(img, filename = fname)
}, imgs, ants_outfiles[c("T1", "T2", "FLAIR", "PD")])
}
L = oasis_train_dataframe(
flair = ants_outfiles["FLAIR"],
t1 = ants_outfiles["T1"],
t2 = ants_outfiles["T2"],
pd = ants_outfiles["PD"],
preproc = FALSE,
brain_mask = n4_brain_mask,
eroder = "oasis")
ants_oasis_dataframe = L$oasis_dataframe
ants_brain_mask = L$brain_mask
ants_top_voxels = L$voxel_selection
library(cluster)
km = kmeans(x = ants_oasis_dataframe, centers = 4)
km_img = niftiarr(ants_brain_mask, 0)
km_img[ants_top_voxels == 1] = km$cluster
n4_flair = readnii(ants_outfiles["FLAIR"])
res = clara(x = ants_oasis_dataframe, k = 4)
cl_img = niftiarr(ants_brain_mask, 0)
cl_img[ants_top_voxels == 1] = res$clustering
ortho2(n4_flair, cl_img > 3, col.y = scales::alpha("red", 0.5))
References
Muschelli, John, Elizabeth Sweeney, Martin Lindquist, and Ciprian Crainiceanu. 2015. “Fslr: Connecting the Fsl Software with R.” The R Journal 7 (1): 163–75.
Sweeney, Elizabeth M, Russell T Shinohara, Navid Shiee, Farrah J Mateen, Avni A Chudgar, Jennifer L Cuzzocreo, Peter A Calabresi, Dzung L Pham, Daniel S Reich, and Ciprian M Crainiceanu. 2013. “OASIS Is Automated Statistical Inference for Segmentation, with Applications to Multiple Sclerosis Lesion Segmentation in Mri.” NeuroImage: Clinical 2: 402–13.
Sweeney, EM, RT Shinohara, CD Shea, DS Reich, and CM Crainiceanu. 2013. “Automatic Lesion Incidence Estimation and Detection in Multiple Sclerosis Using Multisequence Longitudinal Mri.” American Journal of Neuroradiology 34 (1): 68–73.