sparseRegression.Rd
Compute a sparse, spatially coherent regression from a set of input images (with mask) to an outcome variable.
sparseRegression( inmatrix, demog, outcome, mask = NULL, sparseness = 0.05, nvecs = 10, its = 5, cthresh = 250, statdir = NA, z = 0, smooth = 0 )
inmatrix | Input data matrix, with dimension number of subjects by number of voxels. |
---|---|
demog | Input demographics data frame. Contains outcome variable to regress against. |
outcome | Name of column in |
mask | Mask for reconstructing |
sparseness | Level of sparsity desired. |
nvecs | Number of eigenvectors to return. |
its | Number of cross-validation folds to run. |
cthresh | Cluster threshold. |
statdir | Where to put results. If not provided, a temp directory is created. |
z | Row (subject-wise) sparseness. |
smooth | Amount of smoothing. |
A list of values:
Coefficient vector images.
Projections of input images on the sparse regression vectors. Can be used for, e.g., subsequent classification/predictions.
Predicted values of outcome variable.
Kandel B.M., D. Wolk, J. Gee, and B. Avants. Predicting Cognitive Data from Medical Images Using Sparse Linear Regression. Information Processing in Medical Imaging, 2013. literature/web site here ~
Kandel BM, Avants BB.
nsubj <- 50 prop.train <- 1/2 subj.train <- sample(1:nsubj, prop.train*nsubj, replace = FALSE ) input <- t(replicate(nsubj, rnorm(125))) outcome <- seq(1, 5, length.out=nsubj) demog <- data.frame(outcome=outcome) input[, 40:60] <- 30 + outcome + rnorm(length(input[, 40:60]), sd=2) input.train <- input[subj.train, ] input.test <- input[-subj.train, ] demog.train <- data.frame(outcome=demog[subj.train, ]) demog.test <- data.frame(outcome=demog[-subj.train, ]) mymask <- as.antsImage(array(rep(1, 125), dim=c(5,5,5))) myregression <- sparseRegression(input.train, demog.train, 'outcome', mymask, sparseness=0.05, nvecs=5, its=3, cthresh=250)#> Warning: converting NULL pointer to R NULL# visualization of results sample <- rep(0, 125) sample[40:60] <-1 signal.img <- as.antsImage(array(rep(0,125), dim=c(5, 5, 5))) signal.img[signal.img >= 0 ] <- sample # plot( signal.img, axis=2, slices='1x5x1') # actual source of signal # compare against first learned regression vector myimgs <- list() for( i in 1:5){ myarray <- as.array(myregression$eigenanatomyimages[[ i ]]) myarray <- myarray / max(abs(myarray)) # normalize for visualization myimgs[[ i ]] <- antsImageClone(myregression$eigenanatomyimages[[ i ]]) myimgs[[ i ]][mymask > 0] <- myarray } # plot(myimgs[[1]], axis=2, slices='1x5x1') # use learned eigenvectors for prediction result <- regressProjections(input.train, input.test, demog.train, demog.test, myregression$eigenanatomyimages, mymask, 'outcome') # plot(result$outcome.comparison$real, result$outcome.comparison$predicted)