smoothRegression.Rd
Reconstruct a n by 1 vector given n by p matrix of predictors.
smoothRegression( x, y, iterations = 10, sparsenessQuantile = 0.5, positivity = FALSE, smoothingMatrix = NA, nv = 2, extraPredictors, verbose = FALSE )
x | input matrix on which prediction is based |
---|---|
y | target vector |
iterations | number of gradient descent iterations |
sparsenessQuantile | quantile to control sparseness - higher is sparser. |
positivity | restrict to positive or negative solution (beta) weights. choices are positive, negative or either as expressed as a string. |
smoothingMatrix | allows parameter smoothing, should be square and same size as input matrix |
nv | number of predictor spatial vectors |
extraPredictors | additional column predictors |
verbose | boolean option |
vector of size p is output
Avants BB
if (FALSE) { mask = getMask( antsImageRead( getANTsRData( 'r16' ) ) ) spatmat = t( imageDomainToSpatialMatrix( mask, mask ) ) smoomat = knnSmoothingMatrix( spatmat, k = 200, sigma = 1.0 ) mat <- matrix(rnorm(sum(mask)*50),ncol=sum(mask),nrow=50) mat[ 1:25,100:10000]=mat[ 1:25,100:10000]+1 age = rnorm( 1:nrow(mat)) for ( i in c( 5000:6000, 10000:11000, 16000:17000 ) ){ mat[ , i ] = age*0.1 + mat[,i] } sel = 1:25 fit = smoothRegression( x=mat[sel,], y=age[sel], iterations = 10, sparsenessQuantile = 0.5, smoothingMatrix = smoomat, verbose=T ) tt = mat %*% fit$v print( cor.test( age[-sel], tt[-sel,1] ) ) vimg = makeImage( mask, (fit$v[,1] ) ); print(range(vimg)*10) plot( mask, vimg, window.overlay=range(abs(vimg))) }