Reconstruct a n by 1 vector given n by p matrix of predictors.

smoothRegression(
  x,
  y,
  iterations = 10,
  sparsenessQuantile = 0.5,
  positivity = FALSE,
  smoothingMatrix = NA,
  nv = 2,
  extraPredictors,
  verbose = FALSE
)

Arguments

x

input matrix on which prediction is based

y

target vector

iterations

number of gradient descent iterations

sparsenessQuantile

quantile to control sparseness - higher is sparser.

positivity

restrict to positive or negative solution (beta) weights. choices are positive, negative or either as expressed as a string.

smoothingMatrix

allows parameter smoothing, should be square and same size as input matrix

nv

number of predictor spatial vectors

extraPredictors

additional column predictors

verbose

boolean option

Value

vector of size p is output

Author

Avants BB

Examples

if (FALSE) { mask = getMask( antsImageRead( getANTsRData( 'r16' ) ) ) spatmat = t( imageDomainToSpatialMatrix( mask, mask ) ) smoomat = knnSmoothingMatrix( spatmat, k = 200, sigma = 1.0 ) mat <- matrix(rnorm(sum(mask)*50),ncol=sum(mask),nrow=50) mat[ 1:25,100:10000]=mat[ 1:25,100:10000]+1 age = rnorm( 1:nrow(mat)) for ( i in c( 5000:6000, 10000:11000, 16000:17000 ) ){ mat[ , i ] = age*0.1 + mat[,i] } sel = 1:25 fit = smoothRegression( x=mat[sel,], y=age[sel], iterations = 10, sparsenessQuantile = 0.5, smoothingMatrix = smoomat, verbose=T ) tt = mat %*% fit$v print( cor.test( age[-sel], tt[-sel,1] ) ) vimg = makeImage( mask, (fit$v[,1] ) ); print(range(vimg)*10) plot( mask, vimg, window.overlay=range(abs(vimg))) }