knnSmoothingMatrix.Rd
Compute a smoothing matrix based on an input matrix of point coordinates
knnSmoothingMatrix(x, k, sigma, segmentation, ...)
x | input matrix of point coordinates of dimensions n-spatial spatial dimensions by p points |
---|---|
k | number of neighbors, higher causes more smoothing |
sigma | sigma for the gaussian function |
segmentation | optional boolean to restrict specific rows to have minimal respons |
... | arguments passed to |
sparse matrix is output
Avants BB
if (FALSE) { mask = getMask( antsImageRead( getANTsRData( 'r16' ) ) ) spatmat = t( imageDomainToSpatialMatrix( mask, mask ) ) smoothingMatrix = knnSmoothingMatrix( spatmat, k = 25, sigma = 3.0 ) rvec = rnorm( nrow( smoothingMatrix ) ) srvec = smoothingMatrix %*% rvec rvi = makeImage( mask, rvec ) srv = makeImage( mask, as.numeric( srvec ) ) }