combineNuisancePredictors.Rd
Combine and select nuisance predictors to maximize
correlation between inmat
and target
.
combineNuisancePredictors( inmat, target, globalpredictors = NA, maxpreds = 4, localpredictors = NA, method = "cv", k = 5, covariates = NA, ordered = FALSE )
inmat | Input predictor matrix. |
---|---|
target | Target outcome matrix. |
globalpredictors | Global predictors of size |
maxpreds | Maximum number of predictors to output. |
localpredictors | Local predictor array of size |
method | Method of selecting noisy voxels. One of 'svd' or 'cv'.
See |
k | Number of cross-validation folds. |
covariates | Covariates to be considered when assessing prediction
of |
ordered | Can the predictors be assumed to be ordered from most important to least important, as in output from PCA? Computation is much faster if so. |
Array of size nrow(aslmat)
by npreds
,
containing a timeseries of all the nuisance predictors.
If localpredictors
is not NA, array is of size nrow(aslmat)
by ncol(aslmat)
by npreds
.
Benjamin M. Kandel, Brian B. Avants
set.seed(120) simimg <- makeImage( c(10,10,10,20) , rnorm( 10*10*10*20)+1 ) moco <- antsMotionCalculation( simimg , moreaccurate=0) # for real data use below # moco <- antsMotionCalculation(getANTsRData("pcasl")) aslmat <- timeseries2matrix(moco$moco_img, moco$moco_mask) tc <- rep(c(0.5, -0.5), length.out=nrow(aslmat)) noise <- getASLNoisePredictors(aslmat, tc, 0.5 ) noise.sub <- combineNuisancePredictors(aslmat, tc, noise, 2)