getASLNoisePredictors.Rd
Get nuisance predictors from ASL images
getASLNoisePredictors( aslmat, tc, noisefrac = 0.1, polydegree = "loess", k = 5, npreds = 12, method = "noisepool", covariates = NA, noisepoolfun = max )
aslmat | ASL input matrix. |
---|---|
tc | Tag-control sawtooth pattern vector. |
noisefrac | Fraction of data to include in noise pool. |
polydegree | Degree of polynomial for detrending, with a value of 0
indicating no detrending, or |
k | Number of cross-validation folds. |
npreds | Number of predictors to output. |
method | Method of selecting noisy voxels. One of 'compcor' or
'noisepool'. See |
covariates | Covariates to be considered when assessing prediction of tc pattern. |
noisepoolfun | Function used for aggregating R^2 values. |
Matrix of size nrow(aslmat)
by npreds
, containing a
timeseries of all the nuisance predictors.
Brian B. Avants, Benjamin M. Kandel
# for real data do img<-antsImageRead(getANTsRData("pcasl"),4) set.seed(120) img<-makeImage( c(10,10,10,20), rnorm(1000*20)+1 ) mask = getMask( getAverageOfTimeSeries( img ) ) aslmat <- timeseries2matrix( img, mask ) tc <- rep(c(0.5, -0.5), length.out=nrow(aslmat)) noise <- getASLNoisePredictors(aslmat, tc, k=2, npreds=2, noisefrac=0.5 ) cm = colMeans(noise) rounding_type = RNGkind()[3] if (getRversion() < "3.6.0" || rounding_type == "Rounding") { testthat::expect_equal(cm, c(-0.223292128499263, 0.00434481670243642), tolerance = .01 ) } else { testthat::expect_equal(cm, c(-0.223377249912075, 0.0012754214030999), tolerance = .01) }