optimize_SCCANsparseness.Rd
Function used to optimize SCCAN sparseness for lesion to symptom mapping.
optimize_SCCANsparseness(lesmat, behavior, mask, nFolds = 4, sparsenessPenalty = 0.03, lowerSparseness = -0.9, upperSparseness = 0.9, tol = 0.03, justValidate = FALSE, cvRepetitions = ifelse(length(behavior) <= 30, 6, ifelse(length(behavior) <= 40, 5, ifelse(length(behavior) <= 50, 4, 3))), showInfo = TRUE, directionalSCCAN = TRUE, mycoption = 1, robust = 1, sparseness = NA, nvecs = 1, cthresh = 150, its = 30, npermsSCCAN = 0, smooth = 0.4, sparseness.behav = -0.99, maxBased = FALSE, ...)
lesmat | lesion matrix |
---|---|
behavior | behavior vector |
mask | antsImage mask |
nFolds | how many folds to use |
sparsenessPenalty | penalty term |
lowerSparseness | minimum searched sparseness |
upperSparseness | maximum searched sparseness |
tol | tolerance value, see |
justValidate | just check the CV of provided sparseness |
cvRepetitions | number of cross-validations at each sparseness value. Dynamically set depending on sample size: <=30 to 6 reps, <=40 to 5 reps, <=50 to 4 reps, > 50 to 3 reps. |
showInfo | logical (default=TRUE) display messages |
directionalSCCAN | (default=TRUE) switching to FALSE will switch sparseness range in the positive side, 0.005 to 0.9 |
mycoption | standard SCCAN parameter |
robust | standard SCCAN parameter |
sparseness | standard SCCAN parameter |
nvecs | standard SCCAN parameter |
cthresh | standard SCCAN parameter |
its | standard SCCAN parameter |
npermsSCCAN | SCCAN permutations |
smooth | standard SCCAN parameter |
sparseness.behav | what sparsness to use for behavior |
maxBased | standard SCCAN parameter |
... | other arguments received from |
List with:
minimum
- best sparseness value
objective
- minimum value of objective function
CVcorrelation
- cross-validated correlation of optimal sparness