taskFMRI.Rd
Input 4D time series matrix. (Perform slice timing correction externally). Estimate hemodynamicRF from block design. Compute brain mask on average bold image. Get nuisance variables : motion , compcor , globalsignal. High-frequency filter the time series ( externally ). Correct for autocorrelation using bullmore 1996 MRM and AR(2) model with parameters derived from global residual signal. Estimate final glm.
taskFMRI( mat, hrf, myvars, correctautocorr = FALSE, residualizedesignmatrix = FALSE, myformula = NA )
mat | input matrix |
---|---|
hrf | input hrf |
myvars | output of getfMRInuisanceVariables |
correctautocorr | correction auto correlation boolean |
residualizedesignmatrix | boolean |
myformula | statistical equation to be assessed at each voxel |
list of betas and other names entries is output
Avants BB
if (FALSE) { # read the fmri image in and maybe do slice timing correction fmri<-getANTsRData("pcasl") fmri<-antsImageRead( fmri ) # fmri<-iMath(fmri,"SliceTimingCorrection","bspline") # optional myvars<-getfMRInuisanceVariables( fmri, moreaccurate = 0, maskThresh=100 ) mat <- myvars$matrixTimeSeries mat<-frequencyFilterfMRI(mat, 2.5, freqLo=0.01, freqHi=0.1, opt="butt") blockfing = c(0, 36, 72 ) hrf <- hemodynamicRF( scans=dim(fmri)[4] , onsets=blockfing , durations=rep( 12, length( blockfing ) ) , rt=2.5 ) activationBeta<-taskFMRI( mat , hrf , myvars ) }