subgradientL1Regression.Rd
SubgradientL1Regression solves y approx x beta
subgradientL1Regression( y, x, s = 0.01, percentvals = 0.1, nits = 100, betas = NA, sparval = NA )
y | outcome variable |
---|---|
x | predictor matrix |
s | gradient descent parameter |
percentvals | percent of values to use each iteration |
nits | number of iterations |
betas | initial guess at solution |
sparval | sparseness |
output has a list of summary items
Avants BB
mat<-replicate(1000, rnorm(200)) y<-rnorm(200) wmat<-subgradientL1Regression( y, mat, percentvals=0.05 ) print( wmat$resultcorr )#> cor #> 0.7333143