SubgradientL1Regression solves y approx x beta

subgradientL1Regression(
  y,
  x,
  s = 0.01,
  percentvals = 0.1,
  nits = 100,
  betas = NA,
  sparval = NA
)

Arguments

y

outcome variable

x

predictor matrix

s

gradient descent parameter

percentvals

percent of values to use each iteration

nits

number of iterations

betas

initial guess at solution

sparval

sparseness

Value

output has a list of summary items

Author

Avants BB

Examples

mat<-replicate(1000, rnorm(200)) y<-rnorm(200) wmat<-subgradientL1Regression( y, mat, percentvals=0.05 ) print( wmat$resultcorr )
#> cor #> 0.7333143