Take a standard lm result and use bayesian regression to impose spatial regularity.

spatialbayesianlm(
  mylm,
  ymat,
  mask,
  smth = 1,
  priorWeight = 1,
  nhood = NA,
  regweights = NA,
  smoothcoeffmat = NA
)

Arguments

mylm

standard lm result of the form mylm<-lm(ymat~.)

ymat

outcome matrix - usually from imaging data

mask

mask with non-zero entries n-columns of ymat

smth

smoothness parameter

priorWeight

weight on the prior

nhood

size of neighborhood

regweights

weights on rows - size of ymat

smoothcoeffmat

prior coefficient matrix

Value

bayesian regression solution is output as a list of images

Author

Avants BB

Examples

# make some simple data if (FALSE) { if (!exists("fn") ) fn<-getANTsRData("pcasl") asl<-antsImageRead(fn) tr<-antsGetSpacing(asl)[4] aslmean<-getAverageOfTimeSeries( asl ) aslmask<-getMask(aslmean,lowThresh=mean(aslmean),cleanup=TRUE) pcaslpre <- aslPerfusion( asl, dorobust=0, useDenoiser=NULL, skip=1, useBayesian=0, moreaccurate=0, verbose=T, mask=aslmask ) # user might compare to useDenoiser=FALSE pcasl.parameters <- list( sequence="pcasl", m0=pcaslpre$m0 ) aslmat<-timeseries2matrix(asl,aslmask) tc<-as.factor(rep(c("C","T"),nrow(aslmat)/2)) dv<-computeDVARS(aslmat) perfmodel<-lm( aslmat ~ tc + stats::poly(dv,4) ) # standard model ssp<-spatialbayesianlm( perfmodel, aslmat, aslmask, priorWeight=1.e2 ,smth=1.6, nhood=rep(2,3) ) plot( ssp[[1]], slices="2x16x2", axis=3 ) }