sparseDecomboot.Rd
Decomposes a matrix into sparse eigenevectors to maximize explained variance.
sparseDecomboot( inmatrix, inmask = NULL, sparseness = 0.01, nvecs = 50, its = 5, cthresh = 250, z = 0, smooth = 0, initializationList = list(), mycoption = 0, nboot = 10, nsamp = 0.9, robust = 0, doseg = TRUE )
inmatrix | n by p input images , subjects or time points by row , spatial variable lies along columns |
---|---|
inmask | optional antsImage mask |
sparseness | lower values equal more sparse |
nvecs | number of vectors |
its | number of iterations |
cthresh | cluster threshold |
z | u penalty, experimental |
smooth | smoothness eg 0.5 |
initializationList | see initializeEigenanatomy |
mycoption | 0, 1 or 2 all produce different output 0 is combination of 1 (spatial orthogonality) and 2 (subject space orthogonality) |
nboot | boostrap integer e.g. 10 equals 10 boostraps |
nsamp | value less than or equal to 1, e.g. 0.9 means 90 percent of data will be used in each boostrap resampling |
robust | boolean |
doseg | orthogonalize bootstrap results |
Avants BB
#> [1] "boot 1 sample 18" #> [1] "boot 2 sample 18" #> [1] "boot 3 sample 18" #> [1] "boot 4 sample 18" #> [1] "boot 5 sample 18"if (FALSE) { # for prediction if ( usePkg("randomForest") & usePkg("spls") ) { data(lymphoma) training<-sample( rep(c(TRUE,FALSE),31) ) sp<-0.001 ; myz<-0 ; nv<-5 ldd<-sparseDecomboot( lymphoma$x[training,], nvecs=nv , sparseness=( sp ), mycoption=1, z=myz , nsamp=0.9, nboot=50 ) # NMF style outmat<-as.matrix(ldd$eigenanatomyimages ) # outmat<-t(ldd$cca1outAuto) traindf<-data.frame( lclass=as.factor(lymphoma$y[ training ]), eig = lymphoma$x[training,] %*% t(outmat) ) testdf<-data.frame( lclass=as.factor(lymphoma$y[ !training ]), eig = lymphoma$x[!training,] %*% t(outmat) ) myrf<-randomForest( lclass ~ . , data=traindf ) predlymp<-predict(myrf, newdata=testdf) print(paste('N-errors:',sum(abs( testdf$lclass != predlymp ) ), 'non-zero ',sum(abs( outmat ) > 0 ) ) ) for ( i in 1:nv ) print(paste(' non-zero ',i,' is: ',sum(abs( outmat[i,] ) > 0 ) ) ) } } # end dontrun