Uses a target function to denoise resting bold data

rsfDenoise(
  boldmatrix,
  targety,
  motionparams = NA,
  selectionthresh = 0.1,
  maxnoisepreds = 1:12,
  debug = FALSE,
  polydegree = 4,
  crossvalidationgroups = 4,
  tr = 1,
  scalemat = F,
  noisepoolfun = max
)

Arguments

boldmatrix

input bold matrix

targety

target to predict

motionparams

motion parameters / nuisance variables

selectionthresh

e.g. 0.1 take 10 percent worst variables for noise estimation

maxnoisepreds

integer search range e.g 1:10

debug

boolean

polydegree

eg 4 for polynomial nuisance variables

crossvalidationgroups

prior defined or integer valued

tr

bold tr

scalemat

boolean

noisepoolfun

function to help select noise pool e.g. max

Value

matrix is output

Author

Avants BB

Examples

if (FALSE) { # if (!exists("fn") ) fn<-getANTsRData("pcasl") # bold <- antsImageRead( fn ) # avgbold<-getAverageOfTimeSeries(bold) # boldmask<-getMask( avgbold ) # roimask<-antsImageRead("roi.nii.gz") # timeselect<-10:(dim(bold)[4]-10) # # can do this if you like its approach # cleanfMRI <- preprocessfMRI( bold, maskImage=boldmask, # frequencyLowThreshold = 0.01, frequencyHighThreshold = 0.1, # spatialSmoothingType = "gaussian", spatialSmoothingParameters = 2, # residualizeMatrix=TRUE, numberOfCompCorComponents=2 ) # boldmat<-timeseries2matrix( cleanfMRI$cleanBoldImage, cleanfMRI$maskImage ) # roimat<-timeseries2matrix( cleanfMRI$cleanBoldImage, roimask ) # roimean<-rowMeans( roimat ) # svd instead? # roimat<-matrix( roimean, ncol=1) # dnz<-rsfDenoise( boldmat[timeselect,] , # roimat[timeselect,1], motionparams=NA, # polydegree=1, crossvalidationgroups = 8, maxnoisepreds=c(2:4), debug=F ) # # might iterate over above to further refine noise variables # mdl<-bigLMStats( lm( boldmat[timeselect,] ~ roimean[timeselect] + # dnz$polys + dnz$noiseu ), 0.001 ) # betas<-mdl$beta.t[1,] # sum(betas[betas > 3]) # betaimg<-antsImageClone( boldmask ) # betaimg[ boldmask == 1 ]<-betas # antsImageWrite( betaimg, "betas2.nii.gz" ) # # # more complex # bold<-antsImageRead("bold.nii.gz") # boldmask<-antsImageRead("meanboldmask.nii.gz") # aalimg<-antsImageRead("meanboldAALmask.nii.gz") # data("aal",package="ANTsR") # dmnlabels<-aal$label_num[aal$isdmn>0] # aalvec<-aalimg > 0 # whichregion<-3 # for ( i in 1:max(aalimg) ) # { # if ( ! ( i %in% dmnlabels[whichregion] ) ) # { # aalimg[ aalimg == as.numeric(i) ]<-0 # } # } # maskvec<-boldmask > 0 & aalimg == whichregion # boldmask[ maskvec ]<-0 # timeselect<-10:dim(bold)[4] # if ( ! exists("moco") ) { # moco<-.motion_correction(bold,moreaccurate=1) # moco<-as.matrix( moco$moco_params )[timeselect,3:ncol(moco$moco_params)] # } # boldmat<-timeseries2matrix(bold,boldmask) # boldmat<-boldmat[timeselect,] # aalimg[aalimg > 0 ]<-1 # dmnvec<-rowMeans(timeseries2matrix(bold,aalimg))[timeselect] # dmnvec<-(stl(ts(dmnvec, frequency = 4),"per")$time.series)[,2] # dmnvec2<-(stl(ts(dmnvec, frequency = 100),"per")$time.series)[,2] # dmnvec<-ts(as.numeric(dmnvec)-as.numeric(dmnvec2)) # dmnmat<-matrix( dmnvec, ncol=1) # dnz<-rsfDenoise( boldmat , dmnmat[,1], motionparams=moco, polydegree=4, # crossvalidationgroups = 8, maxnoisepreds=1:4, debug=F ) # print(paste("Best number of noise regressors",dnz$n)) # # now recompute the matrix using the full mask # boldmask<-antsImageRead("meanboldmask.nii.gz") # boldmat<-timeseries2matrix(bold,boldmask) # boldmat<-boldmat[timeselect,] # mdl<-bigLMStats( lm( boldmat ~ dmnmat[,1] + dnz$polys + dnz$noiseu ), 0.001 ) # betas<-mdl$beta.t[1,] }