Diffeomorphic registration-based cortical thickness based on probabilistic segmentation of an image. This is an optimization algorithm.

kellyKapowski(
  s,
  g,
  w,
  its = 50,
  r = 0.025,
  m = 1.5,
  x = TRUE,
  e = FALSE,
  t = NULL,
  timeSigma = 1,
  verbose = FALSE,
  ...
)

Arguments

s

segmentation image

g

gray matter probability image

w

white matter probability image

its

convergence params - controls iterations

r

gradient descent update parameter

m

gradient field smoothing parameter

x

matrix-based smoothing

e

restrict deformation boolean

t

time spacing, a vector equal to the number of time dimensions

timeSigma,

a scalar sigma value for distances between time points

verbose

boolean

...

anything else, see KK help in ANTs

Value

thickness antsImage

Author

Shrinidhi KL, Avants BB

Examples

img<-antsImageRead( getANTsRData("r16") ,2) img<-resampleImage(img,c(64,64),1,0) mask<-getMask( img ) segs<-kmeansSegmentation( img, k=3, kmask = mask) thk<-kellyKapowski( s=segs$segmentation, g=segs$probabilityimages[[2]], w=segs$probabilityimages[[3]],its=45,r=0.5,m=1 )