joinEigenanatomy.Rd
joinEigenanatomy joins the input matrix using a community membership approach.
joinEigenanatomy( datamatrix, mask = NULL, listEanatImages, graphdensity = 0.65, joinMethod = "walktrap", verbose = F )
datamatrix | input matrix before decomposition |
---|---|
mask | mask used to create datamatrix |
listEanatImages | list containing pointers to eanat images |
graphdensity | target graph density or densities to search over |
joinMethod | see igraph's community detection |
verbose | bool |
return(list(fusedlist = newelist, fusedproj = myproj, memberships = communitymembership , graph=gg, bestdensity=graphdensity ))
Avants BB
if (FALSE) { # if you dont have images mat<-replicate(100, rnorm(20)) mydecom<-sparseDecom( mat ) kk<-joinEigenanatomy( mat, mask=NULL, mydecom$eigenanatomyimages , 0.1 ) # or select optimal parameter from a list kk<-joinEigenanatomy( mat, mask=NULL, mydecom$eigenanatomyimages , c(1:10)/50 ) # something similar may be done with images mask<-as.antsImage( t(as.matrix(array(rep(1,ncol(mat)),ncol(mat)))) ) mydecom<-sparseDecom( mat, inmask=mask ) eanatimages = matrixToImages( mydecom$eigenanatomyimages, mask ) kki<-joinEigenanatomy( mat, mask=mask, eanatimages , 0.1 ) if ( usePkg("igraph") ) { mydecomf<-sparseDecom( mat, inmask=mask, initializationList=kki$fusedlist , sparseness=0, nvecs=length(kki$fusedlist) ) } }