The JLF initialization is reused throughout a time series with an additional lag argument.

jlfProp(
  targetI,
  targetIMask,
  atlasList,
  rad = 2,
  labelList = NULL,
  rSearch = 3,
  lagValue = 3,
  verbose = FALSE,
  ...
)

Arguments

targetI

antsImage list to be approximated

targetIMask

mask with value 1

atlasList

list containing antsImages with intensity images

rad

neighborhood radius, default to 2

labelList

optional list containing antsImages with segmentation labels

rSearch

radius of search, default is 3

lagValue

number of prior images to use to fwd propagate JLF solution

verbose

boolean

...

arguments to pass to jointLabelFusion

Value

segmentation of time series

Author

Brian B. Avants

Examples

if (FALSE) { set.seed(123) ref = ri( 1 ) %>% resampleImage( 4 ) %>% iMath( "Normalize" ) mi1 = ri( 2 ) mi2 = ri( 3 ) mi3 = ri( 4 ) mi4 = ri( 5 ) mi5 = ri( 6 ) refmask<-getMask( ref ) refmask<-iMath( refmask, "MD", 10 ) # just to speed things up ilist<-list( mi1, mi2, mi3, mi4, mi5 ) seglist<-list() for ( i in 1:length(ilist) ) { ilist[[i]]<-iMath(ilist[[i]],"Normalize") mytx<-antsRegistration(fixed=ref , moving=ilist[[i]] , typeofTransform = c("Affine"), verbose = TRUE ) mywarpedimage<-antsApplyTransforms(fixed=ref, moving=ilist[[i]], transformlist=mytx$fwdtransforms) ilist[[i]]=mywarpedimage seg<-thresholdImage( ilist[[i]],"Otsu", 3) seglist[[i]]<-seg+1 } tarlist = list( iMath( ref, "GD", 3), iMath( ref, "GD", 2), iMath( ref, "GD", 1), iMath( ref, "GD", 0), iMath( ref, "GE", 1), iMath( ref, "GE", 2), iMath( ref, "GE", 3) ) pp = jlfProp( tarlist, refmask, ilist, rSearch=2, labelList=seglist, rad = rep( 2, length( dim( ref ) ) ) ) }