InitializeEigenanatomy is a helper function to initialize sparseDecom and sparseDecom2. Can be used to estimate sparseness parameters per eigenvector. The user then only chooses nvecs and optional regularization parameters.

initializeEigenanatomy(initmat, mask = NULL, nreps = 1, smoothing = 0)

Arguments

initmat

input matrix where rows provide initial vector values. alternatively, this can be an antsImage which contains labeled regions.

mask

mask if available

nreps

nrepetitions to use

smoothing

if using an initial label image, optionally smooth each roi

Value

list is output

Author

Avants BB

Examples

mat<-t(replicate(3, rnorm(100)) ) initdf<-initializeEigenanatomy( mat ) # produces a mask dmat<-replicate(100, rnorm(20)) # data matrix svdv = t( svd( mat, nu=0, nv=10 )$v ) ilist = matrixToImages( svdv, initdf$mask ) eseg = eigSeg( initdf$mask, ilist, TRUE ) eanat<-sparseDecom( dmat, inmask=initdf$mask, sparseness=0, smooth=0, initializationList=ilist, cthresh=0, nvecs=length(ilist) ) initdf2<-initializeEigenanatomy( mat, nreps=2 ) eanat<-sparseDecom( dmat, inmask=initdf$mask, sparseness=0, smooth=0, z=-0.5, initializationList=initdf2$initlist, cthresh=0, nvecs=length(initdf2$initlist) ) # now a regression eanatMatrix<-eanat$eigenanatomyimages # 'averages' loosely speaking anyway myEigenanatomyRegionAverages<-dmat %*% t( eanatMatrix ) dependentvariable<-rnorm( nrow(dmat) ) summary(lm( dependentvariable ~ myEigenanatomyRegionAverages ))
#> #> Call: #> lm(formula = dependentvariable ~ myEigenanatomyRegionAverages) #> #> Residuals: #> Min 1Q Median 3Q Max #> -1.5471 -0.7817 0.1856 0.7615 1.2461 #> #> Coefficients: (1 not defined because of singularities) #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) -0.005678 0.256690 -0.022 0.983 #> myEigenanatomyRegionAverages1 -0.733521 2.057987 -0.356 0.727 #> myEigenanatomyRegionAverages2 0.558452 1.969882 0.283 0.781 #> myEigenanatomyRegionAverages3 -2.957976 14.121203 -0.209 0.837 #> myEigenanatomyRegionAverages4 3.282327 14.377400 0.228 0.823 #> myEigenanatomyRegionAverages5 NA NA NA NA #> myEigenanatomyRegionAverages6 -0.408361 0.482746 -0.846 0.412 #> #> Residual standard error: 1.056 on 14 degrees of freedom #> Multiple R-squared: 0.09468, Adjusted R-squared: -0.2287 #> F-statistic: 0.2928 on 5 and 14 DF, p-value: 0.909 #>
nvox<-1000 dmat<-replicate(nvox, rnorm(20)) dmat2<-replicate(30, rnorm(20)) mat<-t(replicate(3, rnorm(nvox)) ) initdf<-initializeEigenanatomy( mat ) eanat<-sparseDecom2( inmatrix = list(dmat,dmat2), inmask=list(initdf$mask,NA), sparseness=c( -0.1, -0.2 ), smooth=0, initializationList=initdf$initlist, cthresh=c(0,0), nvecs=length(initdf$initlist), priorWeight = 0.1 )