geoSeg.Rd
uses topological constraints to enhance accuracy of brain segmentation
geoSeg( img, brainmask, priors, seginit, vesselopt = "none", vesselk = 2, gradStep = 1.25, mrfval = 0.1, atroposits = 10, jacw = NULL, beta = 0.9 )
img | input image or list of images (multiple features) where 1st image would typically be the primary constrast |
---|---|
brainmask | binary image |
priors | spatial priors, assume first is csf, second is gm, third is wm |
seginit | a previously computed segmentation which should have the structure of |
vesselopt | one of bright, dark or none |
vesselk | integer for kmeans vessel-based processing |
gradStep | scalar for registration |
mrfval | e.g. 0.05 or 0.1 |
atroposits | e.g. 5 iterations |
jacw | precomputed diffeo jacobian |
beta | for sigma transformation ( thksig output variable ) |
list of segmentation result images
Brian B. Avants
if (FALSE) { img = antsImageRead( getANTsRData("simple") ,2) img = n3BiasFieldCorrection( img , 4 ) img = n3BiasFieldCorrection( img , 2 ) bmk = getMask( img ) segs <- kmeansSegmentation( img, 3, bmk ) priors = segs$probabilityimages seg = geoSeg( img, bmk, priors ) }