exemplarInpainting.Rd
Employs a robust regression approach to learn the relationship between a sample image and a list of images that are mapped to the same space as the sample image. The regression uses data from an image neighborhood.
exemplarInpainting( img, paintMask, imageList, featureRadius = 2, scaleInpaintIntensity = 0, sharpen = FALSE, feather = 1, predalgorithm = "lm", debug = FALSE )
img | antsImage to be approximated / painted |
---|---|
paintMask | painting mask with values 1 or values 1 and 2 - if there is a 2 then it will learn from label 1 to paint label 2. should cover the brain. |
imageList | a list containing antsImages |
featureRadius | - radius of image neighborhood e.g. 2 |
scaleInpaintIntensity | - brighter or darker painted voxels, default of 0 sets this parameter automatically |
sharpen | - sharpen the approximated image |
feather | - value (e.g. 1) that helps feather the mask for smooth blending |
predalgorithm | - string svm or lm |
debug | - TRUE or FALSE |
inpainted image
Brian B. Avants
set.seed(123) fi<-abs(replicate(100, rnorm(100))) fi[1:10,]<-fi[,1:10]<-fi[91:100,]<-fi[,91:100]<-0 mask<-fi mask[ mask > 0 ]<-1 mask2<-mask mask2[11:20,11:20]<-2 mask<-as.antsImage( mask , "float" ) fi<-as.antsImage( fi , "float" ) fi<-smoothImage(fi,3) mo<-as.antsImage( replicate(100, rnorm(100)) , "float" ) mo2<-as.antsImage( replicate(100, rnorm(100)) , "float" ) ilist<-list(mo,mo2) painted<-exemplarInpainting(fi,mask,ilist) mask2<-as.antsImage( mask2 , "float" ) painted2<-exemplarInpainting(fi,mask2,ilist) # just use 1 image, so no regression is performed painted3<-exemplarInpainting(fi,mask2, list(ilist[[1]]))