Employs a robust regression approach to learn the relationship between a sample image and a list of images that are mapped to the same space as the sample image. The regression uses data from an image neighborhood.

exemplarInpainting(
  img,
  paintMask,
  imageList,
  featureRadius = 2,
  scaleInpaintIntensity = 0,
  sharpen = FALSE,
  feather = 1,
  predalgorithm = "lm",
  debug = FALSE
)

Arguments

img

antsImage to be approximated / painted

paintMask

painting mask with values 1 or values 1 and 2 - if there is a 2 then it will learn from label 1 to paint label 2. should cover the brain.

imageList

a list containing antsImages

featureRadius

- radius of image neighborhood e.g. 2

scaleInpaintIntensity

- brighter or darker painted voxels, default of 0 sets this parameter automatically

sharpen

- sharpen the approximated image

feather

- value (e.g. 1) that helps feather the mask for smooth blending

predalgorithm

- string svm or lm

debug

- TRUE or FALSE

Value

inpainted image

Author

Brian B. Avants

Examples

set.seed(123) fi<-abs(replicate(100, rnorm(100))) fi[1:10,]<-fi[,1:10]<-fi[91:100,]<-fi[,91:100]<-0 mask<-fi mask[ mask > 0 ]<-1 mask2<-mask mask2[11:20,11:20]<-2 mask<-as.antsImage( mask , "float" ) fi<-as.antsImage( fi , "float" ) fi<-smoothImage(fi,3) mo<-as.antsImage( replicate(100, rnorm(100)) , "float" ) mo2<-as.antsImage( replicate(100, rnorm(100)) , "float" ) ilist<-list(mo,mo2) painted<-exemplarInpainting(fi,mask,ilist) mask2<-as.antsImage( mask2 , "float" ) painted2<-exemplarInpainting(fi,mask2,ilist) # just use 1 image, so no regression is performed painted3<-exemplarInpainting(fi,mask2, list(ilist[[1]]))