Uses clustering methods to split a time series into similar subsets.

clusterTimeSeries(mat, krange = 2:10, nsvddims = NA, criterion = "asw")

Arguments

mat

input time series matrix

krange

k cluster range to explore

nsvddims

eg 2

criterion

for clustering see pamk

Value

matrix is output

Author

Avants BB

Examples

if (FALSE) { if (!exists("fn") ) fn<-getANTsRData("pcasl") # high motion subject asl<-antsImageRead(fn,4) tr<-antsGetSpacing(asl)[4] aslmean<-getAverageOfTimeSeries( asl ) aslmask<-getMask(aslmean,lowThresh=mean(aslmean),cleanup=TRUE) omat<-timeseries2matrix(asl, aslmask ) clustasl<-clusterTimeSeries( omat, krange=4:10 ) for ( ct in 1:max(clustasl$clusters) ) { sel<-clustasl$clusters != ct img<-matrix2timeseries( asl, aslmask, omat[sel,] ) perf <- aslPerfusion( img, dorobust=0.9, useDenoiser=4, skip=10, useBayesian=0, moreaccurate=0, verbose=F, mask=aslmask ) perfp <- list( sequence="pcasl", m0=perf$m0 ) cbf <- quantifyCBF( perf$perfusion, perf$mask, perfp ) } }