Take a prior mean and precision matrix for the regression solution and uses them to solve for the regression parameters. The Bayesian model, here, is on the multivariate distribution of the parameters.

bayesianlm(
  X,
  y,
  priorMean,
  priorPrecision,
  priorIntercept = 0,
  regweights,
  includeIntercept = F
)

Arguments

X

data matrix

y

outcome

priorMean

expected parameters

priorPrecision

inverse covariance matrix of the parameters -

priorIntercept

inverse covariance matrix of the parameters -

regweights

weights on each y, a vector as in lm

includeIntercept

include the intercept in the model

Value

bayesian regression solution is output

Author

Avants BB

Examples

# make some simple data set.seed(1) n<-20 rawvars<-sample(1:n) nois<-rnorm(n) # for some reason we dont know age is correlated w/noise age<-as.numeric(rawvars)+(abs(nois))*sign(nois) wt<-( sqrt(rawvars) + rnorm(n) ) mdl<-lm( wt ~ age + nois ) summary(mdl)
#> #> Call: #> lm(formula = wt ~ age + nois) #> #> Residuals: #> Min 1Q Median 3Q Max #> -1.0942 -0.7471 -0.2221 0.6247 1.7610 #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 1.33844 0.43660 3.066 0.007002 ** #> age 0.16619 0.03718 4.470 0.000337 *** #> nois -0.49379 0.32656 -1.512 0.148879 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: 0.9391 on 17 degrees of freedom #> Multiple R-squared: 0.5822, Adjusted R-squared: 0.533 #> F-statistic: 11.84 on 2 and 17 DF, p-value: 0.0006002 #>
X<-model.matrix( mdl ) priorcoeffs<-coefficients(mdl) covMat<-diag(length(priorcoeffs))+0.1 # make some new data rawvars2<-sample(1:n) nois2<-rnorm(n) # now age is correlated doubly w/noise age2<-as.numeric(rawvars2)+(abs(nois2))*sign(nois2)*2.0 wt2<-( sqrt(rawvars2) + rnorm(n) ) mdl2<-lm( wt2 ~ age2 + nois2 ) X2<-model.matrix( mdl2 ) precisionMat<-solve( covMat ) precisionMat[2,2]<-precisionMat[2,2]*1.e3 # heavy prior on age precisionMat[3,3]<-precisionMat[3,3]*1.e2 # some prior on noise bmdl<-bayesianlm( X2, wt2, priorMean=priorcoeffs, precisionMat ) # testthat::expect_equal(bmdl$beta, c(0.157536274628774, -0.224079937323326)) bmdlNoPrior<-bayesianlm( X2, wt2 ) print(priorcoeffs)
#> (Intercept) age nois #> 1.3384439 0.1661885 -0.4937906
print(bmdl$beta)
#> [1] 0.1653025 -0.4927154
print(bmdlNoPrior$beta)
#> [1] 0.1618386 -0.4768678
if (FALSE) { fn<-'PEDS012_20131101_pcasl_1.nii.gz' fn<-getANTsRData("pcasl") # image available at http://files.figshare.com/1701182/PEDS012_20131101.zip asl<-antsImageRead(fn,4) tr<-antsGetSpacing(asl)[4] aslmean<-getAverageOfTimeSeries( asl ) aslmask<-getMask(aslmean,lowThresh=mean(aslmean),cleanup=TRUE) aslmat<-timeseries2matrix(asl,aslmask) tc<-as.factor(rep(c('C','T'),nrow(aslmat)/2)) dv<-computeDVARS(aslmat) # do some comparison with a single y, no priors y<-rowMeans(aslmat) perfmodel<-lm( y ~ tc + dv ) # standard model tlm<-bigLMStats( perfmodel ) X<-model.matrix( perfmodel ) blm<-bayesianlm( X, y ) print( tlm$beta.p ) print( blm$beta.p ) # do some bayesian learning based on the data perfmodel<-lm( aslmat ~ tc + dv ) # standard model X<-model.matrix( perfmodel ) perfmodel<-lm( aslmat ~ tc + dv ) bayesianperfusionloc<-rep(0,ncol(aslmat)) smoothcoeffmat<-perfmodel$coefficients nmatimgs<-list() for ( i in 1:nrow(smoothcoeffmat) ) { temp<-antsImageClone( aslmask ) temp[ aslmask == 1 ] <- smoothcoeffmat[i,] # temp<-iMath(temp,'PeronaMalik',150,10) temp<-smoothImage(temp,1.5) nmatimgs[[i]]<-getNeighborhoodInMask(temp,aslmask, rep(2,3), boundary.condition = 'mean') smoothcoeffmat[i,]<-temp[ aslmask==1 ] } prior <- rowMeans( smoothcoeffmat ) invcov <- solve( cov( t( smoothcoeffmat ) ) ) blm2<-bayesianlm( X, y, prior, invcov*1.e4 ) print( blm2$beta.p ) for ( i in 1:ncol(aslmat) ) { parammat<-nmatimgs[[1]][,i] for ( k in 2:length(nmatimgs)) parammat<-cbind( parammat, nmatimgs[[k]][,i] ) locinvcov<-solve( cov( parammat ) ) localprior<-(smoothcoeffmat[,i]) blm<-bayesianlm( X, aslmat[,i], localprior, locinvcov*1.e4 ) bayesianperfusionloc[i]<-blm$beta[1] } perfimg<-antsImageClone(aslmask) basicperf<-bigLMStats( perfmodel )$beta[1,] perfimg[ aslmask == 1 ]<-basicperf antsImageWrite(perfimg,'perf.nii.gz') perfimg[ aslmask == 1 ]<-bayesianperfusionloc antsImageWrite(perfimg,'perf_bayes.nii.gz') print( cor.test(basicperf, perfimg[ aslmask == 1 ] ) ) }