Smooths data along the boundary into the missing region.

basicInPaint(img, paintMask, speedimage = NULL, its = 0, gparam = 0.05)

Arguments

img

antsImage to be approximated / painted

paintMask

painting mask with values 1 or values 1 and 2 - if there is a 2 then it will learn from label 1 to paint label 2. should cover the brain.

speedimage

- larger means faster/better

its

- iterations of graddescent

gparam

- graddescent param e.g. 0.05

Value

inpainted image

Author

Brian B. Avants

Examples

set.seed(123) fi<-abs(replicate(100, rnorm(100))) fi[1:10,]<-fi[,1:10]<-fi[91:100,]<-fi[,91:100]<-0 mask<-fi mask[ mask > 0 ]<-1 mask2<-mask mask2[11:20,11:20]<-2 mask<-as.antsImage( mask2 ) fi<-as.antsImage( fi ) fi<-smoothImage( fi, 3 ) painted<-basicInPaint( fi, mask ) if (FALSE) { # lmask<-antsImageRead( "brainmask.nii.gz", 2 ) # limg<-antsImageRead( "r16slice_lesion.nii.gz", 2 ) # mm<-basicInPaint(limg,lmask) # plot(mm) # mm2<-basicInPaint(limg,lmask,its=10,gparam=0.05) # plot(mm2) }