antsSpatialICAfMRI.Rd
Perform spatial ICA on group or individual fMRI data. Preprocessing should be performed prior to calling this function (cf preprocessfMRI.R).
antsSpatialICAfMRI( boldImages, maskImage = NULL, numberOfICAComponents = 20, normalizeComponentImages = TRUE, verbose = FALSE )
boldImages | a list of 4-D ANTs image fMRI data. |
---|---|
maskImage | A 3-D ANTs image defining the region of interest. This must be specified. |
numberOfICAComponents | Number of estimated observers (components). |
normalizeComponentImages | Boolean to specify whether each component vector element is normalized to its z-score. |
verbose | boolean setting verbosity level. |
Output list includes standard ICA matrices from the fastICA algorithm:
X = pre-processed data matrix
K = pre-whitening matrix that projects data onto the first n.comp principal components
W = estimated un-mixing matrix (see definition in details)
A = estimated mixing matrix
S = estimated source matrix
and the component images.
Tustison NJ, Avants BB
set.seed( 2017 ) boldImages <- list() n=16 nvox <- n*n*n*12 dims <- c(n,n,n,12) boldImages[[1]] <- makeImage( dims , rnorm( nvox )+500 ) boldImages[[2]] <- makeImage( dims , rnorm( nvox )+500 ) boldImages[[3]] <- makeImage( dims , rnorm( nvox )+500 ) maskImage = getAverageOfTimeSeries( boldImages[[1]] ) * 0 + 1 icaResults <- antsSpatialICAfMRI( boldImages, maskImage, numberOfICAComponents = 2 )