antsBOLDNetworkAnalysis.Rd
An implementation of a network analysis framework for BOLD data. We expect that you mapped a label image ( e.g. aal ) to the 3D BOLD space. We build a network and graph metrics from this image and these labels based on the user-defined graph density level.
antsBOLDNetworkAnalysis( bold = NULL, mask = NULL, labels = NULL, motion, gdens = 0.2, threshLo = 1, threshHi = 90, freqLo = 0.01, freqHi = 0.1, winsortrim = 0.02, throwaway )
bold | input 4D image |
---|---|
mask | antsImage defines areas of interest |
labels | antsImage defines regions of interest ie a parcellation |
motion | motion parameters - if missing, will estimate from data |
gdens | graph density applied to network covariance matrix |
threshLo | lower threshold for the label image |
threshHi | upper threshold for the label image |
freqLo | lower frequency cutoff |
freqHi | upper frequency cutoff |
winsortrim | winsorize the bold signal by these values eg 0.02 |
throwaway | this number of initial bold volumes |
list of outputs
BB Avants
# none yet - this is not very well tested with recent ANTsR if (FALSE) { myimg <- antsImageRead(getANTsRData( "ch2" ), 3) mylab <- antsImageRead(getANTsRData( "ch2a" ), 3) boldfn <- getANTsRData( "pcasl" ) bold <- antsImageRead( boldfn , 4 ) avgbold <- getAverageOfTimeSeries( bold ) breg <- antsRegistration( avgbold, myimg, typeofTransform = c("AffineFast") ) warpedParcellation <- antsApplyTransforms( avgbold, mylab, transformlist=breg$fwdtransforms, interpolator="NearestNeighbor" ) mask <- getMask( avgbold ) warpedParcellation = maskImage(warpedParcellation, img.mask = mask) old = NA; labels = warpedParcellation; gdens = 0.2; threshLo = 1; threshHi = 90; freqLo = 0.01; freqHi = 0.1; winsortrim = 0.02; result <- antsBOLDNetworkAnalysis( bold=bold, mask=mask, warpedParcellation ) }