This function wraps tapas_predict()
to run in parallel. This function takes
probability maps across subjects and predicts the subject-specific threshold to apply based on the
TAPAS model generated from tapas_train()
. The function will return or save a list of objects
for each subject including the TAPAS predicted subject-specific threshold, the lesion mask produced from
applying this threshold, as well as the lesion mask produced from using the group threshold.
tapas_predict_par(cores = 1, pmap, subject_id, model, clamp = TRUE,
k = 0, ret = FALSE, outfile = NULL, verbose = TRUE)
cores | The number of cores to use. This argument controls at most how many child processes will be run simultaneously. The default is set to 1. |
---|---|
pmap | A |
subject_id | A |
model | The TAPAS model fit from |
clamp | A |
k | The minimum number of voxels for a cluster/component. Segmentation clusters of size less than k are removed from the mask, volume estimation, and the Sørensen's–Dice coefficient (DSC) calculation. |
ret | A |
outfile | Is set to |
verbose | A |
A nested list
. Each element in the list contains subject-level data returned from tapas_predict()
.
if (FALSE) {
# Data is provided in the rtapas package as arrays. Below we will convert them to nifti objects.
# Before we can implement the train_tapas function we have to generate the training data
library(oro.nifti)
# Create a list of gold standard manual segmentation
train_gold_standard_masks = list(gs1 = gs1,
gs2 = gs2,
gs3 = gs3,
gs4 = gs4,
gs5 = gs5,
gs6 = gs6,
gs7 = gs7,
gs8 = gs8,
gs9 = gs9,
gs10 = gs10)
# Convert the gold standard masks to nifti objects
train_gold_standard_masks = lapply(train_gold_standard_masks, oro.nifti::nifti)
# Make a list of the training probability maps
train_probability_maps = list(pmap1 = pmap1,
pmap2 = pmap2,
pmap3 = pmap3,
pmap4 = pmap4,
pmap5 = pmap5,
pmap6 = pmap6,
pmap7 = pmap7,
pmap8 = pmap8,
pmap9 = pmap9,
pmap10 = pmap10)
# Convert the probability maps to nifti objects
train_probability_maps = lapply(train_probability_maps, oro.nifti::nifti)
# Make a list of the brain masks
train_brain_masks = list(brain_mask1 = brain_mask,
brain_mask2 = brain_mask,
brain_mask3 = brain_mask,
brain_mask4 = brain_mask,
brain_mask5 = brain_mask,
brain_mask6 = brain_mask,
brain_mask7 = brain_mask,
brain_mask8 = brain_mask,
brain_mask9 = brain_mask,
brain_mask10 = brain_mask)
# Convert the brain masks to nifti objects
train_brain_masks = lapply(train_brain_masks, oro.nifti::nifti)
# Specify training IDs
train_ids = paste0('subject_', 1:length(train_gold_standard_masks))
# The function below runs on 2 cores. Be sure your machine has 2 cores available or switch to 1.
# Run tapas_data_par function
# You can also use the tapas_data function and generate each subjects data
data = tapas_data_par(cores = 2,
thresholds = seq(from = 0, to = 1, by = 0.01),
pmap = train_probability_maps,
gold_standard = train_gold_standard_masks,
mask = train_brain_masks,
k = 0,
subject_id = train_ids,
ret = TRUE,
outfile = NULL,
verbose = TRUE)
# We can now implement the train_tapas function using the data from tapas_data_par
tapas_model = tapas_train(data = train_data1,
dsc_cutoff = 0.03,
verbose = TRUE)
# Obtain 2 test subject probability maps
test_probability_maps = list(pmap11 = pmap11,
pmap12 = pmap12)
# Make array objects niftis
test_probability_maps = lapply(test_probability_maps, oro.nifti::nifti)
# Create a list of testing brain masks
test_brain_masks = list(brain_mask11 = brain_mask,
brain_mask12 = brain_mask)
# Make array objects niftis
test_brain_masks = lapply(test_brain_masks, oro.nifti::nifti)
# Create a vector of IDs
test_ids = paste0('subject_', (10 + 1:length(test_gold_standard_masks)))
# Run tapas_predict_par function
test_subject_prediction2 = tapas_predict_par(cores = 2,
pmap = test_probability_maps,
subject_id = test_ids,
model = tapas_model,
clamp = TRUE,
k = 0,
ret = TRUE,
outfile = NULL,
verbose = TRUE)
names(test_subject_prediction2)
names(test_subject_prediction2[[1]])
test_subject_prediction2[[1]]$subject_threshold
#' # Look at TAPAS binary segmentation from applying the TAPAS threshold
oro.nifti::image(test_subject_prediction2[[1]]$tapas_binary_mask)
# Look at group threshold binary segmentation from applying the group threshold
oro.nifti::image(test_subject_prediction2[[1]]$group_binary_threshold)
# You can compare with subject 2 by replacing [[1]] with [[2]]
}