dti.smooth-methods.Rd
The function provides structural adaptive smoothing for diffusion weighted image data within the context of an diffusion tensor (DTI) model. It implements smoothing of DWI data using a structural assumption of a local (anisotropic) homogeneous diffusion tensor model (in case a "dtiData"
-object is provided). It also implements structural adaptive smoothing of a diffusion tensor using a Riemannian metric (in case a "dtiTensor"
-object is given), although we strictly recommend to use the first variant due to methodological reasons.
# S4 method for dtiData
dti.smooth(object, hmax=5, hinit=NULL, lambda=20, tau=10, rho=1,
graph=FALSE,slice=NULL, quant=.8, minfa=NULL, hsig=2.5,
lseq=NULL, method="nonlinear", rician=TRUE,
niter=5,result="Tensor")
object | Either an object of class |
---|---|
hmax | Maximal bandwidth |
hinit | Initial bandwidth (default 1) |
lambda | Critical parameter (default 20) |
tau | Critical parameter for orientation scores (default 10) |
rho | Regularization parameter for anisotropic vicinities (default 1) |
graph | "logical": Visualize intermediate results (default FALSE) |
slice | slice number, determines the slice used in visualization |
quant | determines |
minfa | minimal anisotropy index (FA) to use in visualization |
hsig | bandwidth for presmoothing of variance estimates |
lseq | sequence of correction factors for |
method | Method for tensor estimation. May be |
rician | "logical": apply a correction for Rician bias. This is still experimental and depends on spatial independence of errors. |
niter | Maximum number of iterations for tensor estimates using the nonlinear model. |
result | Determines the created object. Alternatives are |
Returns a warning.
We highly recommend to use the method dti.smooth
on DWI data directly, i.e. on an object of class "dtiData"
, due to methodological reasons, see Tabelow et al. (2008). It is usually not necessary to use any other argument than hmax
, which defines the maximum bandwidth of the iteration. If model=="linear"
estimates are obtained using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008). model=="nonlinear"
uses a nonlinear regression model with reparametrization that ensures the tensor to be positive semidefinite, see Koay et.al. (2006). If varmethod=="replicates"
the error variance is estimated from replicated gradient directions if possible, otherwise (default) an estimate is obtained from the residual sum of squares. If volseq==TRUE
the sum of location weights is fixed to \(1.25^k\) within iteration \(k\) (does not depend on the actual tensor). Otherwise the ellipsoid of positive location weights is determined by a bandwidth \(h_k = 1.25^(k/3)\).
An object of class dtiTensor
.
J. Polzehl and K. Tabelow, Beyond the diffusion tensor model: The package dti, Journal of Statistical Software, to appear.
K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, to appear.
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31 (2009) pp. 1--24.
K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
http://www.wias-berlin.de/projects/matheon_a3/
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de