dtiTensor-methods.Rd
The method estimates, in each voxel, the diffusion tensor from the DWI data contained in an object of class "dtiData"
.
# S4 method for dtiData
dtiTensor(object, method=c( "nonlinear", "linear", "quasi-likelihood"),
sigma = NULL, L = 1, mask=NULL, mc.cores = setCores( , reprt = FALSE))
object | Object of class |
---|---|
method | Method for tensor estimation. May be |
sigma | (local) scale parameter of the signal's distribution. |
L | (local) effective degrees of freedom. |
mask | argument to specify a precomputed brain mask |
mc.cores | Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods. Our experience suggests to use 4-6 cores if available. |
An object of class "dtiTensor"
.
Returns a warning.
Estimate diffusion tensor from data in each voxel with the different options for
the regression type and model for variance estimation. If method=="linear"
estimates are obtained
using a linearization of the tensor model. This was the estimate used in Tabelow et.al. (2008).
method=="nonlinear"
uses a nonlinear regression model with reparametrization that ensures the
tensor to be positive semidefinite, see Koay et.al. (2006). The imlementation is based on R's internal
C code for the
BFGS optimization. method=="quasi-likelihood"
solves the nonlinear regression problem with the
expected value of the signal as regression function and weighting according to the signal variance.
Tis requires additional parameters sigma
and L
characterizing the distribution of the signal. If varmethod=="replicates"
the error variance is estimated from replicated
gradient directions if possible, otherwise an estimate is obtained from the residual sum of squares. If
varmodel=="global"
a homogeneous variance is assumed and estimated as the median of the local
variance estimates.
sigma
and 2*L
are the scale parameter and degrees of freedom of the (local) signal distribution. L
characterizes the effective number of coils. Both parameters are either scalars or arrays of the size of the images.
J. Polzehl and K. Tabelow, Beyond the diffusion tensor model: The package dti, Journal of Statistical Software, 44(12), 1-26 (2011).
K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, 203(1), 200-211 (2012).
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31(9) 1-24 (2009).
K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
C.G. Koay, J.D. Carew, A.L. Alexander, P.J. Basser and M.E. Meyerand. Investigation of Anomalous Estimates of Tensor-Derived Quantities in Diffusion Tensor Imaging, Magnetic Resonance in Medicine, 2006, 55, 930-936.
J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
http://www.wias-berlin.de/projects/matheon_a3/
Karsten Tabelow tabelow@wias-berlin.de
J\"org Polzehl polzehl@wias-berlin.de
if (FALSE) demo(dti_art)