Kinetic curves from single compartment models are computed from kinetic parameters.

kineticModel(time, par, model = "extended", aif = "fritz.hansen")

Arguments

time

is a vector of acquisition times (in minutes).

par

is a list of kinetic parameters; e.g., list("ktrans"=0.5,"kep"=1).

model

is a character string that identifies the type of compartmental model to be used. Acceptable models include: “weinmann” Tofts & Kermode AIF convolved with single compartment model “extended” (default) Weinmann model extended with additional vascular compartment, ...

aif

is a character string that identifies the type of arterial input function (AIF) to be used. Acceptable AIF models include: tofts.kermode, fritz.hansen

Value

Computed pharmacokinetic curve.

Details

Compartmental models are the solution to the modified general rate equation (Kety 1951). The specific parametric models considered here include the basic Kety model $$C_t(t)=K^{trans}\left[C_p(t)\otimes\exp(-k_{ep}t)\right],$$ where \(\otimes\) is the convolution operator, and the so-called extended Kety model $$C_t(t)=v_pC_p(t)+K^{trans}\left[C_p(t)\otimes\exp(-k_{ep}t)\right].$$ The arterial input function must be literature-based (with fixed parameters).

References

Fritz-Hansen, T., Rostrup, E., Larsson, H.B.W, Sondergaard, L., Ring, P. and Henriksen, O. (1993) Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging, Magnetic Resonance in Medicine, 36, 225-231.

Tofts, P.S., Brix, G, Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.-Y., Mayr, N.A., Parker, G.J.M., Port, R.E., Taylor, J. and Weiskoff, R. (1999) Estimating kinetic parameters from dynamic contrast-enhanced \(T_1\)-weighted MRI of a diffusable tracer: Standardized quantities and symbols, Journal of Magnetic Resonance, 10, 223-232.

Tofts, P.S. and Kermode, A.G. (1984) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts, Magnetic Resonance in Medicine, 17, 357-367.

Weinmann, H.J., Laniado, M. and Mutzel, W. (1984) Pharmacokinetics of Gd-DTPA/dimeglumine after intraveneous injection into healthy volunteers, Physiological Chemistry and Physics and Medical NMR, 16, 167-172.

See also

Author

Brandon Whitcher bwhitcher@gmail.com and Volker Schmid volkerschmid@users.sourceforge.net

Examples


data("buckley")
xi <- seq(5, 300, by=5)
img <- array(t(breast$data)[,xi], c(13,1,1,60))
mask <- array(TRUE, dim(img)[1:3])
time <- buckley$time.min[xi]

fit.lm <- dcemri.lm(img, time, mask, aif="fritz.hansen")
par.lm <- c("vp"=fit.lm$vp[3], "ktrans"=fit.lm$ktrans[3], "kep"=fit.lm$kep[3])
curve.lm <- kineticModel(time, par.lm)
plot(time, img[3,1,1,], xlab="time", ylab="contrast agent concentration")
lines(time, curve.lm, lwd=2, col=2)

fit.bayes <- dcemri.bayes(img, time, mask, aif="fritz.hansen")
par.bayes <- c("vp"=fit.bayes$vp[3], "ktrans"=fit.bayes$ktrans[3],
               "kep"=fit.bayes$kep[3])
curve.bayes <- kineticModel(time, par.bayes)
lines(time, curve.bayes, lwd=2, col=4)
legend("bottomright", c("Levenburg-Marquardt (extended/fritz.hansen)",
                        "Bayesian Estimation (extended/fritz-hansen)"),
       lwd=2, col=c(2,4))

cbind(time, img[3,,,], curve.lm, curve.bayes)[20:30,]
#>           time           curve.lm curve.bayes
#>  [1,] 1.650000 0.775142 0.7662219   0.7659948
#>  [2,] 1.733333 0.778938 0.7701721   0.7699190
#>  [3,] 1.816667 0.782176 0.7737276   0.7734502
#>  [4,] 1.900000 0.784939 0.7769461   0.7766458
#>  [5,] 1.983333 0.787302 0.7798738   0.7795521
#>  [6,] 2.066667 0.789326 0.7825480   0.7822059
#>  [7,] 2.150000 0.791067 0.7849987   0.7846373
#>  [8,] 2.233333 0.792571 0.7872505   0.7868706
#>  [9,] 2.316667 0.793878 0.7893233   0.7889259
#> [10,] 2.400000 0.795021 0.7912340   0.7908197
#> [11,] 2.483333 0.796029 0.7929963   0.7925659