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The PBJ hypothesis testing procedures

Spatial extent inference (SEI) is a widely used tool in neuroimaging to perform group level analysis, where
neuroimaging data are modeled as a function of subject level covariates such as age, sex, diagnosis, and/or
other covariates. The parametric bootstrap joint (PBJ) testing procedure and the semi-PBJ (sPBJ) are
methods that we recently proposed to perform SEI that relax the assumptions of gaussian random field
(GRF) and permutation based methods. For a detailed description of these procedures please see (Vandekar,
Satterthwaite, Xia, et al. 2018).

The PBJ and sPBJ procedures conceptualize a group level analysis as the second level in a multilevel model;
both allow the user to specify subject specific weights that can be defined as images (e.g. varcopes from fsl)
or as a scalar value for each subject. An optimal decision for the weight for subject i at voxel v is the inverse
of subject i’s variance at location v, call it o; 2(1}). The PBJ procedure assumes that the weights the user
passes are exactly equal to o, 2(11). However, most of the time, o, 2(1}) is unknown. As a solution, the sPBJ
procedure uses a robust “sandwich” covariance estimator that provides consistent estimates of the standard
errors, even if the estimates of o; %(v) are misspecified.

The sPBJ SEI procedure is appropriate for any type of group level analysis and we demonstrated that it is
robust at cluster forming thresholds (CFTs) where GRF-based methods fail to control the FWER.

Overview of this vignette

To demonstrate how to use the pbj package, we use data from Maumet et al. (2016) to perform a meta-analysis
of statistical maps from 21 pain studies (Maumet et al. 2016; Gorgolewski et al. 2015). This vignette will
take you through the process of computing a robust statistical meta-analytic map from the results of the
21 pain studies, performing inference on the maps using the PBJ and sPBJ procedures, and saving and
visualizing the results. Note, the pbj analysis package was designed for group level models where the input
data can be subject or study level data. The tools in this package assume you have fully processed study (or
subject) level imaging data. Preprocessing can be done using other tools in R (Muschelli et al. 2018).

Computing statMaps
loading in the data

The first step is to gather the files we need to perform the analysis. This is the hardest part; passing the
necessary files to the computeStats function produces a statMap object which retains all of the objects we
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Figure 1: Schematic of pbj analysis functions.

need to perform SEI and visualization. First, we install the packages we need. The pain21 package includes
curated data from the “21 Pain Studies” Neurovault repository (Maumet et al. 2016).

INSTALLATION

Use these commands:

install.packages('devtools')
devtools: :install_github('simonvandekar/pain21')
devtools::install_github('simonvandekar/pbj')

The pain21 function from the pain21 package creates a data frame with file paths for the imaging data that
we need to perform the analysis. The following images are required to perform the analysis:

e The mask image is a binary image indicating which voxels should be included in the analysis.
e The character vector of images is the contrast image from each study included in the meta-analysis.
e The character vector of varimages contains the voxel level estimates of variance from each study.

The template is the MNI 152 template and is not necessary to compute the statistical map or perform SEI,
but it is handy to include here for visualization in later steps.

library(pain21)
pain = pain21()
pain$mask

#> [1] "/Library/Frameworks/R. framework/Versions/3.5/Resources/library/pain2l/pain21/mask.nii.gz"
dirname (pain$data$images[1])

#> [1] "/Library/Frameworks/R. framework/Versions/3.5/Resources/library/pain2l/pain21"
head(basename (pain$data$images))
#> [1] "contrast_pain_01.nii.gz" "
#> [3] "contrast_pain_03.ni%.9z

contrast_pain_02.n%%.g2"

" "contrast_pain_04.n1%.92"



#> [5] "contrast_pain_05.nti.9z" "contrast_pain_06.ni%i.gz"
head(basename (pain$data$varimages))

#> [1] "var_pain_01.n%%.gz" "var_pain_02.nt%.9z" "var_pain_03.nit.gz"
#> [4] "var_pain_04.n%%.gz" "var_pain_05.nt%.g9z" "var_pain_06.nit.gz"
basename (pain$template)

#> [1] "MNI152_T1_2mm_brain.nii.gz"

Computing the statistical map using voxel-wise weights

These data can be passed as arguments to the computeStats function. Since this is a meta-analysis we
are performing a one sample t-test, so the full model includes only the intercept and the reduced model is
NULL. There are many options with how we pass arguments and analyze the data. As a first pass, we’ll use
the inverse of the variance images as weights in the regression. Here, we will specify the outdir argument,
which will save the output as nifti images so that the large objects stored in the statMap object are not
retained in memory. Using voxel level weights can take a little while because the computation must be
performed separately at each voxel. computeStats defaults to using a robust “sandwich” covariance estimate
(utilized by the sPBJ procedure); this can be changed by setting robust=FALSE. Because we specified the
output directory, nifti images of the results are stored in outdir and statmap includes only character vectors
and formulas that point to the files in outdir. The output directory and all parent directories are created
automatically by computeStats.

library(pbj)

# setup model equations

form = ~ 1

formred = NULL

outdir = tempfile()

dir.create(outdir)

comptime = system.time(
statmap <- computeStats(pain$data$images, form = form,
formred, pain$mask,
data = pain$data,
Winv = pain$data$varimages, outdir=outdir)

#> Weights are vozel-wise.

#> Running vozel-wise weighted linear models.

#> Getting vozel-wise hat wvalues.

#> Getting vozel-wise residuals for covariate and outcome vectors.
#> Computing robust stat image.

#> Writing output images.

#> Writing sqrtSigma 4d image.

statmap

#>

#> Formula: ~1

#>

#> Contents:

#>  Stat: '/var/folders/h7/dTnp_ycnlzs6dImsny3r3vr0000gn/T//RtmpV5(eI5/filel184059043649/stat.ni
#>  Coef: matriz[1 © 259353]

#>  Sqrt Sigma: '/var/folders/h7/dTnp_ycnlzs6dImsndy3r3vr0000gn/T//RtmpV5QeI5/ft11e184059043649/sqrtSig
#>  Mask: '/Library/Frameworks/R. framework/Versions/3.5/Resources/library/pain2l/pain2l/mask.nit
#>  Robust: TRUE

The summary output gives us an idea of the data we are working with. The computeStats function returns



a statMap object, which contains the following fields:

e The stat object is a character pointing to the statistical nifti image

e The coef object is a character pointing to the 4d coefficient image

e The sqrtSigma object is a character pointing to a 4d covariance nifti image
o The mask object gives the directory to the mask file passed as input

e Because we did not specify a template file it does not exist in the output

Computing the statistical map with study-wise (subject-wise) weights

Often, public data sets only include standardized statistical maps; this makes meta-analysis using conventional
methods (e.g. mixed effects models) difficult or impossible because the study level variances aren’t known.
However, the sPBJ procedure is still valid in large samples because it uses robust standard errors, so any
weights can be used and the standard errors are still consistent, as long there is an adequate number of
studies (or subjects) used in the analysis. The best study level weight is one that is a good estimate of the
variance for the statistical map for that study. However, let’s see how inference changes if we don’t have the
variance images, but assume instead that the variance of the estimate from each study is proportional to the
square root of the sample size. The details are not critical to understanding how to use the package, but feel
free to see below for more information.

Let’s run this analysis again, instead on scaled versions of the statistical maps. Instead of voxel-wise weights
we’ll use weights are that proportional to the sample size for each study. Because we are now going to
pass statistical maps to computeStats, we will compute these maps in R and pass niftiImage objects as
arguments to computeStats, instead of character vectors. Note that we are passing the weights using the
W= argument this time because the weights are assumed to be approximately inversely proportional to the
variance. We include the template argument here for downstream aesthetics.

library(pbj)

# formulas can be passed as strings

form = '~ 1'

formred = NULL

library(RNifti) # NIfTI IO

library(abind) # to concatenate 4d arrays
# read in contrast images

images = readNifti(pain$data$images)

# read in variance images

varimages = readNifti(pain$data$varimages)

# tmages gets the statistical images scaled by sample size
images = lapply(l:length(images), function(ind){
# get stat image
out = images[[ind]];
# scale out wvariance and sample size
out[ varimages[[ind]]!=0] = out[ varimages[[ind]]!=0 ] / sqrt(varimages[[ind]][ varimages[[ind]]!=0]
out})

# don't need these anymore
rm(varimages)

# create 4d nifti image of study level statistical maps
images = updateNifti(do.call(abind, c(images, along=4)), readNifti(pain$template))

# third level analysis of statistical maps
comptimen = system.time(statmapn <- computeStats(images, form, formred, pain$mask,



template=pain$template, data = pain$data, W = pain$dat:
#> Performing vozel regression.
#> Computing hat values.
#> Getting residuals
#> Computing robust stat <image.

statmapn

#>

#> Formula: ~ 1

#>

#> Contents:

#>  Stat: matriz[1  259353]

#>  Coef: matriz[1 © 259353]

#>  Sqrt Sigma: matriz[259353 = 21]

#>  Mask: nifti[91 x 109 = 91] Pizel dimensions: 2mm T 2mm T 25
#> Template: '/Library/Frameworks/R. framework/Versions/3.5/Resources/library/pain21/pain21/MNI152_ T
#>  Robust: TRUE

The statistical map with study level weights has a much faster compute time than the voxel-wise weights
because the voxel-wise weights require inverting a matrix at each location in the mask, whereas the study
level weights only need to invert one matrix. In our paper, for group level analyses of subject level data,
motion was a very effective estimate of subject level variance (Vandekar, Satterthwaite, Xia, et al. 2018). We
will see here that our sample size approximation leads to reductions in power.

The statMap object has a slightly different output here because we did not specify an output directory.

e The stat object is V-vector, where V is the number of nonzero voxels in the mask, indicating the
statistical values within the mask

e The coef object is a m; X V matrix, where m; is the number of extra parameters in the full model,
giving the parameter estimates

e The sqrtSigma object is a V xn matrix that is a square root of the covariance matrix of the test-statistics

e The mask is a niftilmage object of the mask file

e The template object is a character of the template file

statMap includes other things that are important to keep track of, such as the formulas used in the call
to computeStats, whether the robust covariance was used, the degrees of freedom, and residual degrees of
freedom. By default, for 1-dimensional parameter images (i.e. t-tests) a Z-statistic image is return for the
stat object. This is encoded within the pbj package by setting statmap$df=0.

Although, the pbj procedures do not make assumptions about the distribution of the errors we still trans-
form the T-statistics to Z-statistics and the F-statistics to Chi-square statistics (for details see Vandekar,
Satterthwaite, Rosen, et al. 2018). We have found that this improves small sample performance in simulations.

Visualizing and saving statMap objects

At this point we may want to view the statistical images to see what the results look like at a few different
CFTs. We can do this using statMap method for the image function. The default threshold for visualization
is 2.32, which is a one-sided p-value of approximately 0.01.

#image (statmap)
image (statmapn)

We can see from the maps that using voxel-level weights appears to be more powerful: there are more extreme
values. Because we did not specify a template image for the first analysis, image defaults to plotting on the
mask image. If no mask image is passed then pbjClust will error.
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Figure 2: A comparison of using voxel-wise level standard error estimates for parameter estimates versus
using study-level standard error estimates based on sample size.

Figure 3: Other image views.

It is also possible to display the lightbox for other orientations:

#image (statmap, plane='coronal')
image (statmapn, plane='sagittal')

the function write.statMap can be used to write the output to a directory for later use (e.g. separate
visualization or to upload to a public access database).

resdir = tempfile()
dir.create(resdir)
write.statMap(statmapn, outdir=resdir)

#>
#>
#>
#>
#>
#>

Writing output images.

Writing sqrtSigma 4d image.

$stat

[1] "/var/folders/h7/dTnp_ycnlzs6dImsndy3r3vr0000gn/T//RtmpV5Qel5/filel840554ef020/stat.nii.qgz"

$coef



#> [1] "/var/folders/h7/dTnp_ycnlzs6d9msniy3r3vr0000gn,/T//RtmpV5QeI5/filel840554ef020/coef.nit.qgz"

#>

#> $sqrtSigma

#> [1] "/var/folders/h7/dTnp_ycnlzs6d9msnsy3r3vr0000gn/T//RtmpV5QeI5/filel840554ef020/sqrtSigma.nis.gz"

Performing SEI on the statMap objects

The next step is to perform spatial extent inference to see how likely our results are to have occurred under
the global null hypothesis that the image is not associated with the covariate. In this case, the global null
corresponds to the hypothesis that the mean of the study-level images is equal to zero.

Performing SEI using pbjClust

The statMap object includes the statistical map (statmap$stat) and a matrix that is proportional to
an estimate of a square root of the covariance matrix of the statistical map (statmap$sqrtSigma). The
sqrtSigma object can be use to estimate the distribution of the largest cluster size under the null using a
parametric bootstrap procedure (Vandekar, Satterthwaite, Xia, et al. 2018). This distribution is then used to
compute p-values for each cluster.

This step is easy to evaluate because the statMap object contains all of the objects necessary to perform
SEI on the statistical map. The only thing we need to do is specify the CFTs. We have the voxel level map,
which we might choose to use a more stringent threshold on to get finer anatomical details, so we might lean
towards a CFT of 0.005. For the study level map we’ve lost some power with our approximation, so we get
anatomically distinct clusters at a lower threshold, so we might lean towards a CFT of 0.01. The default is to
use multiple CFTs, cfts=c(0.01, 0.005), which will run the sPBJ procedure at both thresholds.

Under the hood, the clustering procedure operates using a large sample Chi-square approximation, even for
t-tests. It does this by squaring the To be consistent with other neuroimaging software, the CF'T for t-tests
assumes a 1-tailed test. We do this by multiplying the CFT by 2 in the case that a t-test was performed,
which is encoded in the statMap by statMap$df=0.

Because the PBJ and sPBJ procedures use a bootstrap, the nboot argument can be used to control the
number of bootstrap samples used. For this example we use 200 samples, but for a publication a few thousand
is more appropriate to reduce the error in the computational approximation. pbjClust keeps track of progress
while it’s running (not shown here). We again use system.time here to track computing times.

pbjcomptime = system.time(sPBJ <- pbjClust(statmap, nboot=200))
pbjcomptimen = system.time(sPBJn <- pbjClust(statmapn, nboot=200))

The bootstrap time doesn’t differ between voxel-wise or study/subject level weights.

print(c('voxel weights'=pbjcomptime[3], 'study weights'=pbjcomptimen[3]))
#> vozxel weights.elapsed study weights.elapsed
#> 51.448 45.294

The pbjClust function returns a pbj object which contains information about which clusters are large enough
to be unlikely to have occurred by chance under the global null. This object is a list containing the following
things:

e stat This is the statistical map from the statMap object without changes
o template This is the template you passed to the statMap object
e mask This is the mask image from the statMap object without changes
e cft* This is a list containing the following;:
— pvalues This is a vector of the SEI p-values, ordered relative to space, not value



— clustmap This is a niftiImage object of cluster indices where each index in clustmap corresponds
to that particular index of the vector of SEI p-values
— pmap This is a niftiImage object of -1og10(p) where p is the SEI p-value

Visualizing and saving pbj objects

pbj objects can be visualized in the same way as the statMap object. The image function takes a desired
rejection threshold alpha and only plots clusters with cluster-wise p-values below that threshold.

If multiple CFTs were used it produces the images for each of those thresholds.

image (sPBJn, alpha = 0.2)

The write.pbj function can be used to export the the images contained in the pbj object and save summary
results in a .csv file. The cluster and p-value maps are written for every CFT in a standardized format
pbj_sei_clust_cft*.nii.gz and pbj_sei_loglOp_cft*.nii.gz, respectively.

write.pbj(sPBJn, resdir)

tab = read.table(file.path(resdir, 'sei_table_cft0.01.csv'), check.names = FALSE, sep = ',', header=TRU
head(tab)

#>  Index Adjusted p-value Signed logl0(p-value) Volume (mm)  Centroid

# 1 6 0.1641791 0.7846821 23112 44, -4, 11
# 2 22 0.5024876 0.2988747 2304 =55, 4, 6
# 3 24 0.5174129 0.2861627 2144 -35, 9, 12
#® 4 4 0.5671642 0.2462912 1712 2, -1, 42
# 5 1 0.6517413 0.1859248 1104 1, 3, 64
# 6 31 0.7810945 0.1072964 448 42, 4, -8

Simulation tools

Tools to run simulations as in (Vandekar, Satterthwaite, Xia, et al. 2018) are in progress.

Appendix
Glossary of acronyms

e CFT - cluster forming threshold. The threshold chosen to binarize the statistical map for spatial extent
hypothesis testing.

o PBJ - parametric bootstrap joint (testing procedure).

o sPBJ - semiparametric bootstrap joint (testing procedure). Robust to variance misspecification.

e SEI - spatial extent inference. Using thresholded contiguous cluster extents to perform inference on a
statistical map.

Technical details for study level weights

Because fMRI data are in arbitrary units, one parameter of interest may be a standardized parameter estimate.
For each study i = 1,...,21

_ B Ty vzl (B Ty yi2) o (P :
EZ; ‘E{<ayi> x (XL X,:) } ~ (gy) X E{(XEX0)'/?} ~ (ay) X /i,



where UyZ is the variance for the subjects y from study i, 8 is the unknown parameter, and X,; is the vector
for the covariate of interest (pain scale for study ). The first approximation is because the function in the
expectation is nonlinear; also, because scaling X,; differently for each study proportionally changes the scale
of ﬁl, so we assume that, across data sets, the scaling of X,; is constant so that the expectation E{Bz} does
not depend on %, and the scale of E{ XTTZXM 1/2} O(y/n;) only depends on the sample size. Because we

are assuming oy, are not provided we further assume o,; = oy.

En _1/2Z ~ B
in ’

Var(n; /2 Z;)=n;".

We can obtain estimates of £ from
y

and then weight with n; since

Back to “Computing the statistical map with study-wise (subject-wise) weights”
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