
brainKCCA: a simple tutorial

Xubo Yue

March 2018

1 Introduction

In this article, we introduce an R package, brainKCCA, for a region-level functional connectivity
network analysis using the voxel-level resting state functional magnetic resonance imaging (fMRI)
data. This package adopts a multi-attribute canonical graph approach to measuring the strength
of functional connectivity for the whole brain network and assessing the statistical significance via
permutation tests. The core algorithm is implemented with the parallel computing option, which
is scalable to the analysis of massive neuroimaging data. This package also provides a useful brain
network visualization tool which can flexibly show all the network connections among predefined
regions in a three dimensional brain from any viewpoint. We provide hands-on tutorials on how to
analyze the resting state fMRI data using this package and provide an example to the analysis of
functional connectivity networks in the Autism Brain Imaging Data Exchange (ABIDE) study.

2 Software Demonstration

2.1 Package installation

Currently, this package is available in Neuroconductor (https://neuroconductor.org/package/
details/brainKCCA) and GitHub (https://github.com/xuboyue). Users can install it by using
the following syntax:

R> source("https://neuroconductor.org/neurocLite.R")

> # From the Latest Release on NeuroC

> neuro_install(’brainKCCA’, release = "stable", release_repo =

+ latest_neuroc_release(release = "stable"))

> neuro_install(’brainKCCA’, release = "current", release_repo =

+ latest_neuroc_release(release = "current"))

> # from GitHub

> neuro_install(’brainKCCA’, release = "stable", release_repo = "github")

> neuro_install(’brainKCCA’, release = "current", release_repo = "github")

The dependencies are mainly utils, elasticnet, rgl, CCA, kernlab, brainR, oro.nifti, misc3d, knitr
and parallel.

2.2 Data format

The resting-state functional magnetic resonance imaging (Rs-fMRI) data of patients/controls are
preprocessed based on the Configurable Pipeline for the analysis of Connectomes (C-PAC). The
default images were registered in 2mm MNI space with dimension 91 × 109 × 91. The flexibility of
core functions in brainKCCA allows other possible setting of processed Rs-fMRI data such as 3mm
MNI resolution and different dimensionality.

1

https://neuroconductor.org/package/details/brainKCCA
https://neuroconductor.org/package/details/brainKCCA
https://github.com/xuboyue

Figure 1 and Figure 2 shows the scan of the region file registered in 2mm and 3mm MNI space
(in software MRIcron).

Figure 3 demonstrates the layout of region file registered in 2mm MNI space. As aforementioned,
the dimensionality of this file is 91 × 109 × 91.

Figure 4 shows one example of the format of Region List required by this package. The first three
columns are the XYZ coordinates of brain region and the next following two columns are the region
index. The last column is the name of brain region. Users are allowed to create their own region list
file (only need to specify region index and region name, the data for coordinates are supposed to be
stored in the Region code files) or use the default region list (116 regions, 2mm resolution) provided
in the R package.

The default region index is defined in AAL116 system, which can be accessed from, for example,
brainGraph package.

R> require(brainGraph)

> aal116

name x.mni y.mni z.mni lobe hemi index

1: PreCG.L -38.65000 -5.680 50.940 Frontal L 1

2: PreCG.R 41.37000 -8.210 52.090 Frontal R 2

3: SFGdor.L -18.45000 34.810 42.200 Frontal L 3

4: SFGdor.R 21.90000 31.120 43.820 Frontal R 4

5: ORBsup.L -16.56000 47.320 -13.310 Frontal L 5

112: VERMIS6 1.14140 -67.059 -15.123 Cerebellum R 112

113: VERMIS7 1.14580 -71.930 -25.141 Cerebellum L 113

114: VERMIS8 1.15210 -64.429 -34.080 Cerebellum R 114

115: VERMIS9 0.86467 -54.875 -34.896 Cerebellum L 115

116: VERMIS10 0.35584 -45.800 -31.683 Cerebellum R 116

2.3 Data processing

The nii2RData function is designed to process nii/nii.gz data (located in imgPath), in argument
niiFile1, which contains patients’ fMRI information, and generate R data files. User can call
this function and store generated R data for further analysis. Users can name their saved files in
saveName argument. The saved R data files are located in datPath.

R> testcase1 <- nii2RData(niiFile1 = "preproc_con21_rest_MNI_2mm",

resolution = "2mm", saveName = "patient1.RData", regionCode="", niiFile2="",

imgPath=getwd(), datPath=getwd())

2.4 Calculation of multiple regions connectivity

This function is designed to calculate the strength of connectivity among multiple brain regions.
It can either accept user-defined region file and region code to partition brain region or employ its
default region data to perform partition. To call this function without user-defined region data, data
file and region of interest can be directly provided to this function:

R> result0<-permkCCA_multipleRegion(imageDat=c("preproc_con21_rest_MNI_2mm",

+ "preproc_con23_rest_MNI_2mm"), region=c(1,60,70), resolution="2mm",

+ saveName="None", kernel= "rbfdot", regionCode="", niiFile2="",

+ imgPath=getwd(), datPath=getwd(),

+ parallel=FALSE, loc="local", perm=50, saveData="None")

Checking data format...

Reading nii files...this progress may take a long time...

|===| 100%

reading data 1

2

|===| 100%

reading data 2

|===| 100%

Completed...

Calculating KCC...

|===| 100%

|===| 100%

|===| 100%

|===| 100%

|===| 100%

|===| 100%

When the function is running, it will generate progress bars with detailed explanations to notify
users the current progress.

The imageDat argument can accept two types of argument: (1) the brain imaging data file
(file name with extension .nii or .nii.gz. However, you do not need to write the extension in this
argument), then the function nii2RData will be invoked to transform nii/nii.gz file(s) into R Data;
(2) the output generated by function nii2RData. One advantage of this setting allows user to
transform nii data files and store the output R data files so that they do not need to re-read data
files in the future. The orginal nii or nii.gz files are supposed to located in path of imgPath.

The region argument can accept vectors of input of brain regions. The preference of resolution
(”2mm” or ”3mm”) can be specified in the resolution arguments.

Users can write name (for example, ”pro1.RData”) in argument saveName to save processed
data generated by nii2RData function. The saveData argument allows users to save generated R
data files (for example, ”result1.RData”). All results are saved under path datPath.

The kernel option can instruct function to calculate correlation by different kernel. ”rbfdot”
represents the the radial basis kernel function ”Gaussian”. perm is the number of permutation in
the permutation test.

If users do not want to use the default region data, they are supposed to specify their own region
information in the regionCode and niiFile2 arguments. To call this function with user-defined
region file and region code:

R> result1<-permkCCA_multipleRegion(imageDat=c("preproc_con21_rest_MNI_2mm",

+ "preproc_con23_rest_MNI_2mm"), region=c(1,60,70), regionCode="RegionList.txt",

+ niiFile2="AAL_MNI_2mm.nii")

the outputs are omitted for brevity

The customized region file can have more (or less) than the default 116 partitions and different
region name. Additionally, users are supposed to provide corresponding region partition data in the
niiFile2 argument. Three key components are stored in the variables result0 and result1: the
region index, the p value and the name of corresponding regions.

The parallel computing issue shall be discussed in the fourth section.

2.5 Summary of results

The results generated by permkCCA multipleRegion can be summarized by the function sum-
mary kcca. The first argument of summary function is the result generated by permkCCA multipleRegion.
The second argument is the significance level. Typically it can be 0.05 or 0.01. The fourth argument
indicates which format used to save table. For example, ”markdown” indicates outputting summary
information as R markdown table.

R> summary_kcca(kcca_object=result0, significance=0.05, patientID=1

+ , saveFormat="markdown", threshold=0.2)

summary of kcca object 1 generated by ’permkCCA_multipleRegion’ function:

3

|index1 |index2 |region1 |region2 |pvalue |

|:------|:------|:-------|:-------|:------|

|1 |60 |PreCG.L |SPG.R |0 |

|1 |70 |PreCG.L |PCL.R |0 |

|60 |70 |SPG.R |PCL.R |0 |

>

Note that if users have more than one patient data, they need to specify which patient they would
like to see in patientID argument. If users would like to summarize connectivity network in group
level, they can set saveFormat="group", then this function will generate an object (with regions
that are significant) which can be used to plot (see next section). Note that it requires more than 1
patient’s data. The threshold argument is used to determine threshold of significance.

R> group_data <- summary_kcca(kcca_object=result0, significance=0.05,

+ saveFormat="group", threshold=0.2)

2.6 Visualization of multiple regions connectivity

This section is devoted to demonstrate approaches to build functional connectivity network. The
results generated by permkCCA multipleRegion can be treated as one argument in function
multipleRegion plot:

R> multipleRegion_plot(input=result0, regionCodeProvided = FALSE,

+ view = "coronal", color = "blue", screenShot = "None")

You have 2 patients’ data

Which data you would like to see? 1

p value of kccc between PreCG.L and SPG.R is: 0

p value of kccc between PreCG.L and PCL.R is: 0

p value of kccc between SPG.R and PCL.R is: 0

> rgl.snapshot("result1.png")

The input argument accepts result generated by permkCCA multipleRegion. The FALSE in
regionCodeProvided indicates that the user defined region code has not been provided. The
view can be specified as ”coronal”, ”axial”, ”SL” (left sagittal) and ”SR” (right sagittal). The
color argument defines the color of connection lines. The resulting connectivity network will be
generated and the rgl.snapshot function from package rgl can save the screenshot as png file. The
resulting connectivity network is reported in Figure 5.

The function also can plot multiple views of brains (Figure 6).

> multipleRegion_plot(result0, view = c("coronal", "axial", "SL", "SR"))

You have 2 patients’ data

Which data you would like to see? 1

p value of kccc between PreCG.L and SPG.R is: 0

p value of kccc between PreCG.L and PCL.R is: 0

p value of kccc between SPG.R and PCL.R is: 0

> rgl.snapshot("result2.png")

When you obtained group-level object, you can construct network by:

> multipleRegion_plot(group_data, view = c("coronal", "axial", "SL", "SR"))

> rgl.snapshot("result3.png")

4

3 Performance and Analysis

We demonstrate the performance of connectivity calculation in this section. We will use all 90 brain
regions with resolution 3mm, and perform multiple region calculation by 50 times permutation. The
running time is measured under cluster environment by parallel computing with 16 processors.

R> result2<-permkCCA_multipleRegion(imageDat="UM_1_0050272_func_preproc",

+ region=c(1:90), resolution="3mm", regionCode="RegionList90.txt",

+ niiFile2="AAL_90_3mm.nii", parallel=TRUE, loc="cluster")

The argument parallel=TRUE will initiate parallel computing and loc=”cluster” indicates that
the codes will be executed in cluster. If users would like to run parallel computing in local computer,
loc=”local” can be specified. The average running time is about 5 hours.

We performed a case study of 60 patients data (with 34 autism and 26 controls) by using cluster
parallel computing in High Performance Computing (HPC) cluster and jobs were submitted via
Portable Batch System (PBS) files, where the commands and cluster resources used for jobs are
defined. The script of PBS files are as follows:

#!/bin/sh

PBS preamble

#PBS -N brainKCCA

#PBS -M maxyxb@umich.edu

#PBS -m abe

#PBS -t 1-60

Change the number of cores (ppn=1), amount of memory, and walltime:

#PBS -l nodes=1:ppn=16,mem=40Gb,walltime=8:00:00

#PBS -j oe

#PBS -V

Change "example_flux" to the name of your Flux allocation:

#PBS -A maxyxb

#PBS -q fluxod

#PBS -l qos=flux

End PBS preamble

Show list of CPUs you ran on, if you’re running under PBS

if [-n "$PBS_NODEFILE"]; then cat $PBS_NODEFILE; fi

Change to the directory you submitted from

if [-n "$PBS_O_WORKDIR"]; then cd $PBS_O_WORKDIR; fi

Put your job commands here:

module load R

R CMD BATCH --no-restore --no-save script.R script.out

For each PBS job, the following R codes were recursively used:

R> array_ID <- as.numeric(Sys.getenv(’PBS_ARRAYID’))

> #set working directory to your imaging files

> setwd("./UM_1")

> fileName <- gsub(".nii.gz","",list.files())[array_ID]

> setwd("..")

> testcase <- nii2RData(niiFile1 = fileName, resolution="3mm",

+ regionCode="RegionList90.txt", niiFile2="AAL_90_3mm.nii",

+ imgPath="./UM_1", datPath="./UM_1_result")

> result <- permkCCA_multipleRegion(imageDat=testcase, region=c(1:90),

+ resolution="3mm", regionCode="RegionList90.txt",

+ niiFile2="AAL_90_3mm.nii", parallel=TRUE, loc="cluster")

> tableTemp<-summary_kcca(result,0.05,1,"excel")

> write.csv(tableTemp,paste(fileName, ".csv", sep=""), col.names=FALSE)

> group_data_2 <- meanConnection(path=getwd(), threshold=0.2)

5

60 csv files were generated and the meanConnection function was used to process all these files.
The users are supposed to separate cases and controls csv files. Users can specify locations of their
csv files in path argument. The percentage of connection are calculated based on significance in
each region pairs. The threshold of percentage is calculated based on binomial test to confirm the
connections were not false positive (in this example, the threshold is 0.25). The meanConnection
function will return a data frame with significant region index and region name (without p value)
and the multipleRegion plot function can accept this dataframe as an argument and generate
region-level connectivity network (Figure 7-8). Users need to set significance=NA in this case.

> multipleRegion_plot(group_data_2, NA, view = c("coronal", "axial", "SL", "SR"))

> rgl.snapshot("result3.png")

6

List of Figures

1 2mm MNI region file . 8
2 3mm MNI region file . 9
3 Region Code . 10
4 Region List . 11
5 Regions-level connectivity network (coronal and axial view) 12
6 multiple regions connectivity network (multiple views) 13
7 multiple regions connectivity network for case . 14
8 multiple regions connectivity network for control . 15

7

Figure 1: 2mm MNI region file

8

Figure 2: 3mm MNI region file

9

Figure 3: Region Code

10

Figure 4: Region List

11

Figure 5: Regions-level connectivity network (coronal and axial view)

12

Figure 6: multiple regions connectivity network (multiple views)

13

Figure 7: multiple regions connectivity network for case

14

Figure 8: multiple regions connectivity network for control

15

	Introduction
	Software Demonstration
	Package installation
	Data format
	Data processing
	Calculation of multiple regions connectivity
	Summary of results
	Visualization of multiple regions connectivity

	Performance and Analysis

