hilbert.filter.Rd
Converts name of Hilbert wavelet pair to filter coefficients.
hilbert.filter(name)
name | Character string of Hilbert wavelet pair, see acceptable
names below (e.g., |
---|
Simple switch
statement selects the appropriate HWP. There are
two parameters that define a Hilbert wavelet pair using the notation
of Selesnick (2001,2002), \(K\) and \(L\). Currently, the only
implemented combinations \((K,L)\) are (3,3), (3,5), (4,2) and
(4,4).
List containing the following items:
length of the wavelet filter
low-pass filter coefficients
high-pass filter coefficients
Selesnick, I.W. (2001). Hilbert transform pairs of wavelet bases. IEEE Signal Processing Letters\/~8(6), 170--173.
Selesnick, I.W. (2002). The design of approximate Hilbert transform pairs of wavelet bases. IEEE Transactions on Signal Processing\/~50(5), 1144--1152.
B. Whitcher
hilbert.filter("k3l3")
#> $length
#> [1] 12
#>
#> $hpf
#> $hpf[[1]]
#> [1] -0.0022260892 0.0426791770 0.0248291600 -0.4982782400 0.7997265200
#> [6] -0.2867863600 -0.1564275500 0.0331898960 0.0434276420 0.0022046914
#> [11] -0.0022229002 -0.0001159435
#>
#> $hpf[[2]]
#> [1] -1.558262e-02 4.943225e-02 2.167541e-01 -7.458501e-01 6.133371e-01
#> [6] 1.550640e-02 -1.270504e-01 -3.236969e-02 1.970114e-02 6.190912e-03
#> [11] -5.254341e-05 -1.656336e-05
#>
#>
#> $lpf
#> $lpf[[1]]
#> [1] 0.0001159435 -0.0022229002 -0.0022046914 0.0434276420 -0.0331898960
#> [6] -0.1564275500 0.2867863600 0.7997265200 0.4982782400 0.0248291600
#> [11] -0.0426791770 -0.0022260892
#>
#> $lpf[[2]]
#> [1] 1.656336e-05 -5.254341e-05 -6.190912e-03 1.970114e-02 3.236969e-02
#> [6] -1.270504e-01 -1.550640e-02 6.133371e-01 7.458501e-01 2.167541e-01
#> [11] -4.943225e-02 -1.558262e-02
#>
#>
hilbert.filter("k3l5")
#> $length
#> [1] 12
#>
#> $hpf
#> $hpf[[1]]
#> [1] -5.854176e-06 2.299268e-04 2.864101e-03 -1.273398e-02 -5.957379e-02
#> [6] 1.300891e-01 2.653746e-01 -7.875716e-01 5.340248e-01 -3.981034e-03
#> [11] -4.557677e-02 -3.574788e-02 1.021288e-02 2.614091e-03 -2.131052e-04
#> [16] -5.425879e-06
#>
#> $hpf[[2]]
#> [1] -6.439594e-05 -4.664223e-05 9.547891e-03 6.282690e-03 -1.233684e-01
#> [6] 4.621801e-03 5.832856e-01 -7.650914e-01 2.292948e-01 7.456225e-02
#> [11] 9.250975e-03 -2.860147e-02 -8.400312e-04 1.166470e-03 3.572714e-07
#> [16] -4.932617e-07
#>
#>
#> $lpf
#> $lpf[[1]]
#> [1] 5.425879e-06 -2.131052e-04 -2.614091e-03 1.021288e-02 3.574788e-02
#> [6] -4.557677e-02 3.981034e-03 5.340248e-01 7.875716e-01 2.653746e-01
#> [11] -1.300891e-01 -5.957379e-02 1.273398e-02 2.864101e-03 -2.299268e-04
#> [16] -5.854176e-06
#>
#> $lpf[[2]]
#> [1] 4.932617e-07 3.572714e-07 -1.166470e-03 -8.400312e-04 2.860147e-02
#> [6] 9.250975e-03 -7.456225e-02 2.292948e-01 7.650914e-01 5.832856e-01
#> [11] -4.621801e-03 -1.233684e-01 -6.282690e-03 9.547891e-03 4.664223e-05
#> [16] -6.439594e-05
#>
#>
hilbert.filter("k4l2")
#> $length
#> [1] 12
#>
#> $hpf
#> $hpf[[1]]
#> [1] 0.002285229 -0.017099408 -0.061694251 0.160409270 0.227520750
#> [6] -0.774586170 0.560358370 -0.041525062 -0.034722190 -0.036090743
#> [11] 0.013358873 0.001785330
#>
#> $hpf[[2]]
#> [1] 0.0114261460 0.0059121296 -0.1332013800 0.0403150080 0.5409737900
#> [6] -0.7795662200 0.2746430800 0.0584667250 0.0134499020 -0.0325914860
#> [11] -0.0001847535 0.0003570660
#>
#>
#> $lpf
#> $lpf[[1]]
#> [1] -0.001785330 0.013358873 0.036090743 -0.034722190 0.041525062
#> [6] 0.560358370 0.774586170 0.227520750 -0.160409270 -0.061694251
#> [11] 0.017099408 0.002285229
#>
#> $lpf[[2]]
#> [1] -0.0003570660 -0.0001847535 0.0325914860 0.0134499020 -0.0584667250
#> [6] 0.2746430800 0.7795662200 0.5409737900 -0.0403150080 -0.1332013800
#> [11] -0.0059121296 0.0114261460
#>
#>
hilbert.filter("k4l4")
#> $length
#> [1] 16
#>
#> $hpf
#> $hpf[[1]]
#> [1] -2.593319e-05 6.742522e-04 5.732357e-03 -1.697939e-02 -6.975951e-02
#> [6] 1.337267e-01 2.790955e-01 -7.833091e-01 5.302173e-01 -8.136445e-03
#> [11] -5.068726e-02 -3.860533e-02 1.320347e-02 5.548244e-03 -6.690907e-04
#> [16] -2.573467e-05
#>
#> $hpf[[2]]
#> [1] -2.333987e-04 -1.556956e-04 1.548964e-02 9.196125e-03 -1.352010e-01
#> [6] -5.170879e-03 5.883470e-01 -7.574938e-01 2.329811e-01 7.708457e-02
#> [11] 7.702384e-03 -3.355466e-02 -1.980900e-03 2.990384e-03 1.907454e-06
#> [16] -2.859407e-06
#>
#>
#> $lpf
#> $lpf[[1]]
#> [1] 2.573467e-05 -6.690907e-04 -5.548244e-03 1.320347e-02 3.860533e-02
#> [6] -5.068726e-02 8.136445e-03 5.302173e-01 7.833091e-01 2.790955e-01
#> [11] -1.337267e-01 -6.975951e-02 1.697939e-02 5.732357e-03 -6.742522e-04
#> [16] -2.593319e-05
#>
#> $lpf[[2]]
#> [1] 2.859407e-06 1.907454e-06 -2.990384e-03 -1.980900e-03 3.355466e-02
#> [6] 7.702384e-03 -7.708457e-02 2.329811e-01 7.574938e-01 5.883470e-01
#> [11] 5.170879e-03 -1.352010e-01 -9.196125e-03 1.548964e-02 1.556956e-04
#> [16] -2.333987e-04
#>
#>