SuBLIME_prediction.Rd
Takes in MRI images from followup and gets predictions (probabilities) of the enhancing of lesions
SuBLIME_prediction(baseline_flair, follow_up_flair, baseline_pd, follow_up_pd,
baseline_t2, follow_up_t2, baseline_t1, follow_up_t1, time_diff,
baseline_nawm_mask = NULL, follow_up_nawm_mask = baseline_nawm_mask,
brain_mask, model = SuBLIME::SuBLIME_model, voxsel = TRUE,
smooth.using = c("GaussSmoothArray", "none"), voxsel.sigma = diag(3, 3),
voxsel.ksize = 5, s.sigma = diag(3, 3), s.ksize = 3,
plot.imgs = FALSE, slice = 90, pdfname = "diag.pdf", verbose = TRUE)
baseline_flair | Baseline FLAIR image, either array or class nifti |
---|---|
follow_up_flair | Followup FLAIR image, either array or class nifti |
baseline_pd | Baseline PD image, either array or class nifti |
follow_up_pd | Followup PD image, either array or class nifti |
baseline_t2 | Baseline T2 image, either array or class nifti |
follow_up_t2 | Followup T2 image, either array or class nifti |
baseline_t1 | Baseline T1 image, either array or class nifti |
follow_up_t1 | Followup T1 image, either array or class nifti |
time_diff | Difference in time (in days) between baseline and followup, numeric |
baseline_nawm_mask | Baseline Normal Appearing white matter mask, either array or class nifti. Will be coerced to logical usign baseline_nawm_mask $> 0$. If NULL, no NAWM normalization is done (assumes data is already normalized) |
follow_up_nawm_mask | Followup Normal Appearing white matter mask, either array or class nifti. Will be coerced to logical usign follow_up_nawm_mask $> 0$. Defaults to baseline_nawm_mask if not specified. If NULL, no NAWM normalization is done (assumes data is already normalized) |
brain_mask | Brain mask, either array or class nifti. Will be #' coerced to logical usign brain_mask $> 0$. |
model | Model of class |
voxsel | Do Voxel Selection based on normalized T2 (logical) |
smooth.using | Character vector to decide if using
|
voxsel.sigma | Sigma passed to |
voxsel.ksize | Kernel size passed to |
s.sigma | Sigma passed to |
s.ksize | Kernel size passed to |
plot.imgs | Plot images along the way |
slice | Slice to be plotted |
pdfname | Name of pdf created for |
verbose | Print Diagnostic Messages |
array
predict
if (FALSE) {
download_data()
modes = c("FLAIR", "PD", "T2", "VolumetricT1")
modals = paste0(modes, "norm.nii.gz")
base_files = system.file(file.path("01/Baseline", modals), package="SuBLIME")
base_imgs = lapply(base_files, readNIfTI, reorient=FALSE)
f_files = system.file(file.path("01/FollowUp", modals), package="SuBLIME")
f_imgs = lapply(f_files, readNIfTI, reorient=FALSE)
names(base_imgs) = names(f_imgs) = modes
baseline_nawm_file = system.file("01/Baseline/nawm.nii.gz", package="SuBLIME")
baseline_nawm_mask = readNIfTI(baseline_nawm_file, reorient=FALSE)
baseline_nawm_mask = drop(baseline_nawm_mask)
follow_up_nawm_file = system.file("01/FollowUp/nawm.nii.gz", package="SuBLIME")
follow_up_nawm_mask = readNIfTI(follow_up_nawm_file, reorient=FALSE)
brain_file = system.file("01/duramask.nii.gz", package="SuBLIME")
brain_mask = readNIfTI(brain_file, reorient=FALSE)
brain_mask = drop(brain_mask)
follow_up_nawm_mask = NULL
baseline_nawm_mask = NULL
smooth.using = "GaussSmoothArray"
verbose = TRUE
time_diff = 10
voxsel = TRUE
model = SuBLIME_model
#voxsel.sigma = s.sigma =diag(3,3)
#s.ksize = 3
#voxsel.ksize = 5
outimg = SuBLIME_prediction(
baseline_flair = base_imgs[["FLAIR"]],
follow_up_flair= f_imgs[["FLAIR"]],
baseline_pd = base_imgs[["PD"]],
follow_up_pd = f_imgs[["PD"]],
baseline_t2 = base_imgs[["T2"]],
follow_up_t2 = f_imgs[["T2"]],
baseline_t1 = base_imgs[["VolumetricT1"]],
follow_up_t1 = f_imgs[["VolumetricT1"]],
time_diff = time_diff,
baseline_nawm_mask = baseline_nawm_mask,
brain_mask = brain_mask,
voxsel = voxsel,
model = model, plot.imgs= TRUE,
pdfname = "~/Dropbox/SuBLIME_Web_Test/01/pckg_diagnostc.pdf"
)
names(base_imgs) = paste0("baseline_", c("flair", "pd", "t2", "t1"))
names(f_imgs) = paste0("follow_up_", c("flair", "pd", "t2", "t1"))
attach(base_imgs)
attach(f_imgs)
}