dkiTensor-methods.Rd
These methods estimate, in each voxel, the diffusion kurtosis tensor (and the diffusion tensor) and some scalar indices.
# S4 method for dtiData
dkiTensor(object, method=c("CLLS-QP", "CLLS-H", "ULLS", "QL", "NLR"),
sigma=NULL, L=1, mask=NULL,
mc.cores=setCores(, reprt=FALSE), verbose=FALSE)
# S4 method for dkiTensor
dkiIndices(object, mc.cores=setCores(, reprt=FALSE),
verbose=FALSE)
object | Object of class |
---|---|
method | Method for tensor estimation. May be |
sigma | Scale parameter of intensity distribution (unprocessed). Used with |
L | Effective number of coils, 2*L are the degrees of freedom of the intensity
distribution (unprocessed). The default corresponds, e.g., to the case of a SENSE reconstruction.
Used with |
mask | argument to specify a precomputed brain mask |
mc.cores | Number of cores to use. Defaults to number of threads specified for openMP, see documentation of package awsMethods. Not yet fully implemented for these methods. |
verbose | Verbose mode. |
An object of class "dkiTensor"
or "dkiIndices"
.
signature(object = "ANY")
Returns a warning
signature(object = "dtiData")
The method "dkiTensor"
estimates the diffusion kurtosis
model, i.e., the kurtosis tensor and the diffusion tensor.
signature(object = "dkiTensor")
The method "dkiIndices"
estimates
some scalar indices from the kurtosis tensor. The method is still experimental, some
quantities may be removed in future versions, other might be included.
A. Tabesh, J.H. Jensen, B.A. Ardekani, and J.A. Helpern, Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging, Magnetic Resonance in Medicine, 65, 823-836 (2011).
E.S. Hui, M.M. Cheung, L. Qi, and E.X. Wu, Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis, Neuroimage, 42, 122-134 (2008).
J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
http://www.wias-berlin.de/projects/matheon_a3/
Karsten Tabelow tabelow@wias-berlin.de