smse3ms.Rd
The functions perform adaptive weights smoothing for data in orientation space SE(3),
e.g. diffusion weighted MR data,
with spatial coordinates given by voxel location within a mask and spherical information given
by gradient direction. Observations can belong to different shells characterized by b-value bv
.
The data provided should only refer to voxel within mask.
smse3ms(sb, s0, bv, grad, kstar, lambda, kappa0, mask, sigma,
ns0 = 1, ws0 = 1, vext = NULL, ncoils = 1, verbose = FALSE, usemaxni = TRUE)
smse3(sb, s0, bv, grad, mask, sigma, kstar, lambda, kappa0,
ns0 = 1, vext = NULL, vred = 4, ncoils = 1, model = 0, dist = 1,
verbose = FALSE)
sb | 2D array of diffion weighted data, first dimension refers to index ov voxel within the mask, second dimension to the number diffusion weighted images. |
---|---|
s0 | vector of length |
bv | vector of b-values. |
grad | matrix of gradient directions with |
kstar | number of steps in adaptive weights smoothing. |
lambda | Scale parameter in adaptation |
kappa0 | determines amount of smoothing on the sphere. Larger values correspond to stronger smoothing
on the sphere. If |
mask | 3D image defining a mask (logical) |
sigma | Error standard deviation. Assumed to be known and homogeneous in the current implementation.
A reasonable estimate may be defined
as the modal value of standard deviations obtained using method |
ns0 | Actual number of non-diffusion-weigthed images used to obtain |
ws0 | Weight for non-diffusion-weigthed images in statistical penalty. |
vext | Voxel extensions. |
ncoils | Effective number of receiver coils (in case of e.g. GRAPPA reconstructions),
should be 1 in case of SENSE reconstructions. |
verbose | If |
usemaxni | If |
vred | Used if |
model | Determines which quantities are smoothed. Possible values are
|
dist | Distance in SE3. Reasonable values are 1 (default, see Becker et.al. 2012), 2 ( a slight modification of 1: with k6^2 instead of abs(k6)) and 3 (using a 'naive' distance on the sphere) |
The functions return lists with main results in components
th
and th0
containing the smoothed data.
Joerg Polzehl, Karsten Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R. Heidemann, J. Polzehl. Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS). Medical Image Analysis, 2012, 16, 1142-1155. DOI:10.1016/j.media.2012.05.007.
S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, J. Polzehl. Adaptive smoothing of multi-shell diffusion-weighted magnetic resonance data by msPOAS. Neuroimage, 2014, 95, 90-105. DOI:10.1016/j.neuroimage.2014.03.053.
J\"org Polzehl polzehl@wias-berlin.de
These functions are intended to be used internally in package dti
only.