awsdata.Rd
Extract data and estimates from an object of class aws
awsdata(awsobj, what)
awsobj | an object of class |
---|---|
what | can be "data" (extracts observed response), "theta" (estimated parameters), "est" (estimated regression function), "var" (approx. variance of estimated regression function), "sd" (approx. standard deviation of estimated regression function), "sigma2" (error variance), "mae" (mean absolute error for each iteration step, if available), "ni" (number of observations per bin), "mask" (logical indicator for bins where the regression function is estimated). "bi" (array of sum of weights or NULL) "bi2" (array of sum of squared weights or NULL) |
The returned object is formatted as an array if appropriate. The returned object may be NULL if the information is not available.
an vector or array containing the specified information.
Joerg Polzehl, Vladimir Spokoiny, Adaptive Weights Smoothing with applications to image restoration, J. R. Stat. Soc. Ser. B Stat. Methodol. 62 , (2000) , pp. 335--354
Joerg Polzehl, Vladimir Spokoiny, Propagation-separation approach for local likelihood estimation, Probab. Theory Related Fields 135 (3), (2006) , pp. 335--362.
Joerg Polzehl, Vladimir Spokoiny, in V. Chen, C.; Haerdle, W. and Unwin, A. (ed.) Handbook of Data Visualization Structural adaptive smoothing by propagation-separation methods Springer-Verlag, 2008, 471-492
Joerg Polzehl polzehl@wias-berlin.de
require(aws)
# 1D local constant smoothing
if (FALSE) demo(aws_ex1)
if (FALSE) demo(aws_ex2)
# 2D local constant smoothing
if (FALSE) demo(aws_ex3)
# 1D local polynomial smoothing
if (FALSE) demo(lpaws_ex1)
# 2D local polynomial smoothing
if (FALSE) demo(lpaws_ex2)
# 1D irregular design
if (FALSE) demo(irreg_ex1)
# 2D irregular design
if (FALSE) demo(irreg_ex2)