Much of this work has been adapted by the FSL guide for DTI reconstruction: http://camino.cs.ucl.ac.uk/index.php?n=Tutorials.DTI. We will show you a few steps that have been implemented in rcamino: camino_pointset2scheme, camino_modelfit, camino_fa, camino_md, and camino_dteig.
The data located in this tutorial is located at http://cmic.cs.ucl.ac.uk/camino//uploads/Tutorials/example_dwi.zip. It contains 3 files:
4Ddwi_b1000.nii.gz - a 4D image of the DWI data.brain_mask.nii.gz - A brain mask of the DTI datagrad_dirs.txt - a 3 column text file with the b-vectors as the first 3 columnsFirst, we download the data into a temporary directory the unzip it:
tdir = tempdir()
tfile = file.path(tdir, "example_dwi.zip")
download.file("http://cmic.cs.ucl.ac.uk/camino//uploads/Tutorials/example_dwi.zip",
destfile = tfile)
files = unzip(zipfile = tfile, exdir = tdir, overwrite = TRUE)As dtifit requires the b-values and b-vectors to be separated, and this data has b-values of \(1000\) when the b-vectors is not zero. This is very important and you must know where your b-values and b-vectors are when doing your analyses and what units they are in.
library(rcamino)
b_data_file = grep("[.]txt$", files, value = TRUE)
scheme_file = camino_pointset2scheme(infile = b_data_file,
bvalue = 1e9)/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/pointset2scheme -inputfile '/tmp/RtmpLPgO2V/grad_dirs.txt' -bvalue 1000000000 -outputfile /tmp/RtmpLPgO2V/file3a26266e4b06.scheme
Here we ensure that the number of b-values/b-vectors is the same as the number of time points in the 4D image.
library(neurobase)Loading required package: oro.nifti
oro.nifti 0.8.1
img_fname = grep("4Ddwi_b1000", files, value = TRUE)
img = readnii(img_fname)
ntim(img)[1] 33
grads = readLines(b_data_file)
length(grads)[1] 33
# cleanup
rm(list= "img"); gc() used (Mb) gc trigger (Mb) max used (Mb)
Ncells 632653 33.8 1168576 62.5 940480 50.3
Vcells 1080071 8.3 139717724 1066.0 168960222 1289.1
We will save the result in a temporary file (outfile), but also return the result as a nifti object ret, as retimg = TRUE. We will use the first volume as the reference as is the default in FSL. Note FSL is zero-indexed so the first volume is the zero-ith index:
float_fname = camino_image2voxel(infile = img_fname,
outputdatatype = "float")/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/image2voxel -inputfile '/tmp/RtmpLPgO2V/4Ddwi_b1000.nii.gz' -outputfile '/tmp/RtmpLPgO2V/file3a265adae75b.Bfloat' -outputdatatype float
Note, from here on forward we will use either the filename for the output of the eddy current correction or the eddy-current-corrected nifti object.
mask_fname = grep("mask", files, value = TRUE)
model_fname = camino_modelfit(
infile = float_fname,
scheme = scheme_file,
mask = mask_fname,
outputdatatype = "double"
)/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/modelfit -inputfile '/tmp/RtmpLPgO2V/file3a265adae75b.Bfloat' -outputfile '/tmp/RtmpLPgO2V/file3a2666f59a66.Bdouble' -inputdatatype float -schemefile /tmp/RtmpLPgO2V/file3a26266e4b06.scheme -bgmask /tmp/RtmpLPgO2V/brain_mask.nii.gz -maskdatatype float -model dt
fa_fname = camino_fa(infile = model_fname)cat '/tmp/RtmpLPgO2V/file3a2666f59a66.Bdouble' | /tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/fa -inputmodel dt -outputdatatype double > '/tmp/RtmpLPgO2V/file3a263771e6fe.Bdouble'
library(neurobase)
fa_img_name = camino_voxel2image(infile = fa_fname,
header = img_fname,
gzip = TRUE,
components = 1)/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/voxel2image -inputfile /tmp/RtmpLPgO2V/file3a263771e6fe.Bdouble -header /tmp/RtmpLPgO2V/4Ddwi_b1000.nii.gz -outputroot /tmp/RtmpLPgO2V/file3a2631be38b8_ -components 1 -gzip
fa_img = readnii(fa_img_name)We can chain Camino commands using the magrittr pipe operation (%>%):
library(magrittr)
fa_img2 = model_fname %>%
camino_fa() %>%
camino_voxel2image(header = img_fname, gzip = TRUE, components = 1) %>%
readniicat '/tmp/RtmpLPgO2V/file3a2666f59a66.Bdouble' | /tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/fa -inputmodel dt -outputdatatype double > '/tmp/RtmpLPgO2V/file3a2660e56e80.Bdouble'
/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/voxel2image -inputfile /tmp/RtmpLPgO2V/file3a2660e56e80.Bdouble -header /tmp/RtmpLPgO2V/4Ddwi_b1000.nii.gz -outputroot /tmp/RtmpLPgO2V/file3a265ffe0ac8_ -components 1 -gzip
all.equal(fa_img, fa_img2)[1] TRUE
Using ortho2, we can visualize these FA maps:
ortho2(fa_img)Similar to getting FA maps, we can get mean diffusivity (MD) maps, read them into R, and visualize them using ortho2:
md_img = model_fname %>%
camino_md() %>%
camino_voxel2image(header = img_fname, gzip = TRUE, components = 1) %>%
readniicat '/tmp/RtmpLPgO2V/file3a2666f59a66.Bdouble' | /tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/md -inputmodel dt -outputdatatype double > '/tmp/RtmpLPgO2V/file3a266db52fa5.Bdouble'
/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/voxel2image -inputfile /tmp/RtmpLPgO2V/file3a266db52fa5.Bdouble -header /tmp/RtmpLPgO2V/4Ddwi_b1000.nii.gz -outputroot /tmp/RtmpLPgO2V/file3a2642c8cda7_ -components 1 -gzip
ortho2(md_img)Using camino_dt2nii, we can export the diffusion tensors into NIfTI files. We see the result is the filenames of the NIfTI files, and that they all exist (otherwise there’d be an errors.)
nifti_dt = camino_dt2nii(
infile = model_fname,
inputmodel = "dt",
header = img_fname,
gzip = TRUE
)/tmp/RtmpcyCddB/Rinst383b3793ab66/rcamino/camino/bin/dt2nii -inputfile /tmp/RtmpLPgO2V/file3a2666f59a66.Bdouble -header /tmp/RtmpLPgO2V/4Ddwi_b1000.nii.gz -inputmodel dt -outputroot /tmp/RtmpLPgO2V/file3a26657298b_ -gzip
stopifnot(all(file.exists(nifti_dt)))
print(nifti_dt)[1] "/tmp/RtmpLPgO2V/file3a26657298b_exitcode.nii.gz"
[2] "/tmp/RtmpLPgO2V/file3a26657298b_lns0.nii.gz"
[3] "/tmp/RtmpLPgO2V/file3a26657298b_dt.nii.gz"
We can read these DT images into R again using readnii, but we must set drop_dim = FALSE for diffusion tensor images because the pixel dimensions are zero and readnii assumes you want to drop “empty” dimensions
dt_imgs = lapply(nifti_dt, readnii, drop_dim = FALSE)